Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Grazing networks provide useful functional connectivity for plants in fragmented systems
Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
2012 (English)In: Journal of Vegetation Science, ISSN 1100-9233, E-ISSN 1654-1103, Vol. 23, no 5, 970-977 p.Article in journal (Refereed) Published
Abstract [en]

Question To what extent does the movement of animals between fragmented habitat patches provide functional connectivity via endozoochorous seed dispersal? Location The Stockholm archipelago, Sweden. Methods We followed all movements of livestock between islands during one grazing season. After each movement, manure was collected and its seed content assessed through seedling emergence. Seedling data were then compared to vegetation surveys from the grazed islands with regard to functional traits. Results Light- and nitrogen-demanding locally abundant species, and those with relatively small and persistent seeds were more likely to be moved between islands. For quantitative traits, only a subset of the available trait ranges were dispersed, with extreme values left behind. Species apparently specialized to other means of dispersal emerged from the manure samples. Neither dispersed traits nor seed density changed with timing of movement, but seed richness and diversity both increased throughout the season. The subsets of endozoochorously-dispersed species in the established vegetation were more similar than non-dispersed subsets between islands linked by livestock. Conclusions Grazing networks contribute to the connectivity of the core species in the system, and could provide useful tools for grassland management in fragmented landscapes.

Place, publisher, year, edition, pages
2012. Vol. 23, no 5, 970-977 p.
Keyword [en]
Archipelago, Biodiversity, Dispersal distance, Historical ecology, Human-mediated dispersal, Long-distance dispersal, Rotational grazing
National Category
Ecology
Research subject
Physical Geography
Identifiers
URN: urn:nbn:se:su:diva-82122DOI: 10.1111/j.1654-1103.2012.01413.xISI: 000308392300015OAI: oai:DiVA.org:su-82122DiVA: diva2:566754
Funder
Formas
Note

AuthorCount:4;

Available from: 2012-11-09 Created: 2012-11-08 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Auffret, Alistair G.Schmucki, RetoReimark, JosefinCousins, Sara A. O.
By organisation
Department of Physical Geography and Quaternary Geology
In the same journal
Journal of Vegetation Science
Ecology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 37 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf