Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Introduction to attosecond delays in photoionization
Stockholm University, Faculty of Science, Department of Physics.ORCID iD: 0000-0002-5274-1009
2012 (English)In: Journal of Physics B: Atomic, Molecular and Optical Physics, ISSN 0953-4075, E-ISSN 1361-6455, Vol. 45, no 18, p. 183001-Article in journal (Refereed) Published
Abstract [en]

This tutorial presents an introduction to the interaction of light and matter on the attosecond timescale. Our aim is to detail the theoretical description of ultra-short time delays and to relate these to the phase of extreme ultraviolet (XUV) light pulses and to the asymptotic phaseshifts of photoelectron wave packets. Special emphasis is laid on time-delay experiments, where attosecond XUV pulses are used to photoionize target atoms at well-defined times, followed by a probing process in real time by a phase-locked, infrared laser field. In this way, the laser field serves as a 'clock' to monitor the ionization event, but the observable delays do not correspond directly to the delay associated with single-photon ionization. Instead, a significant part of the observed delay originates from a measurement induced process, which obscures the single-photon ionization dynamics. This artefact is traced back to a phaseshift of the above-threshold ionization transition matrix element, which we call the continuum-continuum phase. It arises due to the laser-stimulated transitions between Coulomb continuum states. As we shall show here, these measurement-induced effects can be separated from the single-photon ionization process, using analytical expressions of universal character, so that eventually the attosecond time delays in photoionization can be accessed.

Place, publisher, year, edition, pages
2012. Vol. 45, no 18, p. 183001-
National Category
Atom and Molecular Physics and Optics
Identifiers
URN: urn:nbn:se:su:diva-82103DOI: 10.1088/0953-4075/45/18/183001ISI: 000308809000002Scopus ID: 2-s2.0-84866248310OAI: oai:DiVA.org:su-82103DiVA, id: diva2:566782
Note

AuthorCount:3;

Available from: 2012-11-09 Created: 2012-11-08 Last updated: 2022-10-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopusarXiv:1205.6624

Authority records

Dahlström, J. Marcus

Search in DiVA

By author/editor
Dahlström, J. Marcus
By organisation
Department of Physics
In the same journal
Journal of Physics B: Atomic, Molecular and Optical Physics
Atom and Molecular Physics and Optics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 77 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf