CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt184",{id:"formSmash:upper:j_idt184",widgetVar:"widget_formSmash_upper_j_idt184",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt192_j_idt200",{id:"formSmash:upper:j_idt192:j_idt200",widgetVar:"widget_formSmash_upper_j_idt192_j_idt200",target:"formSmash:upper:j_idt192:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On Amoebas and Multidimensional ResiduesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2012 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: Department of Mathematics, Stockholm University , 2012. , p. 20
##### Keyword [en]

amoeba, multidimensional residue, duality principle, effective, uniform, Artin-Rees, Ronkin function
##### National Category

Mathematical Analysis Geometry
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-82843ISBN: 978-91-7447-617-0 (print)OAI: oai:DiVA.org:su-82843DiVA, id: diva2:573936
##### Public defence

2013-01-18, sal 14, hus 5, Kräftriket, Roslagsvägen 101, Stockholm, 13:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt987",{id:"formSmash:j_idt987",widgetVar:"widget_formSmash_j_idt987",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1004",{id:"formSmash:j_idt1004",widgetVar:"widget_formSmash_j_idt1004",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1012",{id:"formSmash:j_idt1012",widgetVar:"widget_formSmash_j_idt1012",multiple:true});
##### Note

##### List of papers

This thesis consists of four papers and an introduction.

In Paper I we calculate the second order derivatives of the Ronkin function of an affine polynomial in three variables. This gives an expression for the real Monge-Ampére measure associated to the hyperplane amoeba. The measure is expressed in terms of complete elliptic integrals and hypergeometric functions.

In Paper II and III we prove that a certain semi-explicit cohomological residue associated to a Cohen-Macaulay ideal or more generally an ideal of pure dimension, respectively, is annihilated precisely by the given ideal. This is a generalization of the local duality principle for the Grothendieck residue and the cohomological residue of Passare. These results follow from residue calculus, due to Andersson and Wulcan, but the point here is that our proof is more elementary. In particular, it does not rely on the desingularization theorem of Hironaka.

In Paper IV we prove a global uniform Artin-Rees lemma for sections of ample line bundles over smooth projective varieties. We also prove an Artin-Rees lemma for the polynomial ring with uniform degree bounds. The proofs are based on multidimensional residue calculus.

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Manuscript. Paper 3: Manuscript. Paper 4. Manuscript.

Available from: 2012-12-27 Created: 2012-11-28 Last updated: 2013-01-07Bibliographically approved1. An explicit calculation of the Ronkin function$(function(){PrimeFaces.cw("OverlayPanel","overlay572618",{id:"formSmash:j_idt1073:0:j_idt1098",widgetVar:"overlay572618",target:"formSmash:j_idt1073:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. A local Grothendieck duality theorem for Cohen-Macaulay ideals$(function(){PrimeFaces.cw("OverlayPanel","overlay572615",{id:"formSmash:j_idt1073:1:j_idt1098",widgetVar:"overlay572615",target:"formSmash:j_idt1073:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. A local duality principle for ideals of pure dimension$(function(){PrimeFaces.cw("OverlayPanel","overlay572621",{id:"formSmash:j_idt1073:2:j_idt1098",widgetVar:"overlay572621",target:"formSmash:j_idt1073:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. An effective uniform Artin-Rees lemma$(function(){PrimeFaces.cw("OverlayPanel","overlay572626",{id:"formSmash:j_idt1073:3:j_idt1098",widgetVar:"overlay572626",target:"formSmash:j_idt1073:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt2096",{id:"formSmash:j_idt2096",widgetVar:"widget_formSmash_j_idt2096",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2149",{id:"formSmash:lower:j_idt2149",widgetVar:"widget_formSmash_lower_j_idt2149",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2150_j_idt2152",{id:"formSmash:lower:j_idt2150:j_idt2152",widgetVar:"widget_formSmash_lower_j_idt2150_j_idt2152",target:"formSmash:lower:j_idt2150:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});