Change search
ReferencesLink to record
Permanent link

Direct link
Oceanic lithosphere, Mg(II), Na(I), PPi and life's origin
Stockholm University, Faculty of Science, Department of Geological Sciences. (Hydrothermal Organic Geochemistry)
2012 (English)In: Serpentine days: 3rd edition / [ed] M. Andreani, A.-L. Auzende, I. Daniel, A. Delacour, Deep Carbon Observatory , 2012Conference paper (Other academic)
Abstract [en]

Life may have started in connection with early plate tectonic processes coupled to alkaline hydrothermal activity. Pyrophosphate (PPi) and Na+ transport may have preceded ATP and H+ transport through primitive membranes in association with the dominant geochemistry of the Earth at the time of the origin and early evolution of life. A hydrothermal environment in which Na+ is abundant and H+ is rare exists in sediment-starved subduction zones, like the Mariana forearc in the W Pacific Ocean. It is considered to mimic the Archean Earth (Pons et al., 2011). There, the forearc pore fluids have a pH up to 12.6 and a Na+-concentration of 0.7 mol/kg seawater. PPi could have been formed during early subduction of oceanic lithosphere by dehydration of protonated orthophosphates.  A key to PPi formation in these geological environments is a low local activity of water. Magnesium, on the other hand, is a common element on Earth, particularly in oceanic crust and the upper mantle (as well as on the other terrestrial planets) and plays a special role in biochemistry due to its ability to coordinate six oxygen atoms efficiently in its first coordination shell. Such oxygen atoms may be part of one or two charged oxyanions, which means that Mg2+can, for instance, tie together two different phosphate groups that are located at distance from each other in a macromolecule, and in this way be responsible for the folding of large molecules like RNA. This property of Mg2+ also helps the stabilization of diphosphate and triphosphate groups of nucleotides, as well as promoting the condensation of orthophosphate to oligophosphates, like PPi and trimetaphosphate. According to the ‘RNA World’ hypothesis the first enzymes – the ribozymes – consisted of RNA, which depended on Mg2+ for its self-cleavage (Gilbert, 1986). Mg2+ is also present in all DNA and RNA activation processes. The central role of Mg2+ in the function of ribozymes and its ‘archaic’ position in ribosomes (the protein making machinery in all cells), and the fact that magnesium generally has coordination properties different from other cations, suggests that the inorganic chemistry of magnesium, together with that of sodium and phosphate, had a key position in the first chemical processes leading to the origin and early evolution of life.

Place, publisher, year, edition, pages
Deep Carbon Observatory , 2012.
Keyword [en]
Serpentinization, prebiotic organic synthesis, pyrophosphate, Mg(II), Na(I), origin of life
National Category
Other Earth and Related Environmental Sciences
Research subject
URN: urn:nbn:se:su:diva-83122OAI: diva2:574088
Serpentine Days 2012
Available from: 2012-12-04 Created: 2012-12-04 Last updated: 2013-02-20Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Holm, Nils
By organisation
Department of Geological Sciences
Other Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 43 hits
ReferencesLink to record
Permanent link

Direct link