Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A malaria serological map indicating the intersection between parasite antigenic diversity and host antibody repertoires
Stockholm University, Faculty of Science, The Wenner-Gren Institute .
Stockholm University, Faculty of Science, The Wenner-Gren Institute .
Stockholm University, Faculty of Science, The Wenner-Gren Institute .
Show others and affiliations
2012 (English)In: European Journal of Clinical Microbiology and Infectious Diseases, ISSN 0934-9723, E-ISSN 1435-4373, Vol. 31, no 11, 3117-3125 p.Article in journal (Refereed) Published
Abstract [en]

A malaria vaccine targeting Plasmodium falciparum remains a strategic goal for malaria control. If a polyvalent vaccine is to be developed, its subunits would probably be chosen based on immunogenicity (concentration of elicited antibodies) and associations of selected antigens with protection. We propose an additional possible selection criterion for the inclusion of subunit antigens; that is, coordination between elicited antibodies. For the quantitative estimation of this coordination, we developed a malaria serological map (MSM). Construction of the MSM was based on three categories of variables: (i) malaria antigens, (ii) total IgG and IgG subclasses, (iii) different sources of plasma. To validate the MSM, in this study, we used four malaria antigens (AMA1, MSP2-3D7, MSP2-FC27 and Pf332-C231) and re-grouped the plasma samples into five pairs of subsets based on age, gender, residence, HbAS and malaria morbidity in 9 years. The plasma total IgG and IgG subclasses to the test antigens were measured, and the whole material was used for the MSM construction. Most of the variables in the MSM were previously tested and their associations with malaria morbidity are known. The coordination of response to each antigens pair in the MSM was quantified as the correlation rate (CR = overall number of significant correlations/total number of correlations x 100 %). Unexpectedly, the results showed that low CRs were mostly associated with variables linked with malaria protection and the antigen eliciting the least CRs was the one associated with protection. The MSM is, thus, of potential value for vaccine design and understanding of malaria natural immunity.

Place, publisher, year, edition, pages
2012. Vol. 31, no 11, 3117-3125 p.
National Category
Microbiology
Identifiers
URN: urn:nbn:se:su:diva-83793DOI: 10.1007/s10096-012-1673-zISI: 000310247800034OAI: oai:DiVA.org:su-83793DiVA: diva2:578521
Note

AuthorCount:7;

Available from: 2012-12-18 Created: 2012-12-14 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Berzins, KlavsTroye-Blomberg, Marita
By organisation
The Wenner-Gren Institute
In the same journal
European Journal of Clinical Microbiology and Infectious Diseases
Microbiology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 110 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf