Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Structure of the TatC core of the twin-arginine protein transport system
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Show others and affiliations
2012 (English)In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 492, no 7428, 210-+ p.Article in journal (Refereed) Published
Abstract [en]

The twin-arginine translocation (Tat) pathway is one of two general protein transport systems found in the prokaryotic cytoplasmic membrane and is conserved in the thylakoid membrane of plant chloroplasts. The defining, and highly unusual, property of the Tat pathway is that it transports folded proteins, a task that must be achieved without allowing appreciable ion leakage across the membrane. The integral membrane TatC protein is the central component of the Tat pathway. TatC captures substrate proteins by binding their signal peptides. TatC then recruits TatA family proteins to form the active translocation complex. Here we report the crystal structure of TatC from the hyperthermophilic bacterium Aquifex aeolicus. This structure provides a molecular description of the core of the Tat translocation system and a framework for understanding the unique Tat transport mechanism.

Place, publisher, year, edition, pages
2012. Vol. 492, no 7428, 210-+ p.
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-84811DOI: 10.1038/nature11683ISI: 000312259300033OAI: oai:DiVA.org:su-84811DiVA: diva2:581431
Note

AuthorCount:20;

Available from: 2013-01-02 Created: 2013-01-02 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Högbom, Martin
By organisation
Department of Biochemistry and Biophysics
In the same journal
Nature
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 41 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf