In this paper, we analyze the relation between particular, contingent, and general aspects of a school science activity and show how they are intertwined in nontrivial ways as students give explanations for how a real galvanic cell works during conversations with a researcher. The conversations were examined by using practical epistemology analysis, which made it possible to follow students’ meaning making in detail. The analysis revealed interactions between generic explanations of electrochemistry and the distinctions and correlations that were connected to particulars and contingencies of the galvanic cell. Consequences of these interactions amounted to becoming reminded of knowledge one had come across before, being able to connect distinctions of particular features of the cell to generalized chemical explanations, and realizing which aspects may be excluded from the account. The results indicate that learning in science needs to be approached more as a contingent process than as something that progresses along one particular dimension. They show how students appropriate the sociocultural tools of science and how they situate what they learn in both the particular features of the activity and in the relevant science. Hence, there is a need for more inclusive accounts of how students progress toward increased competency in science.