Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A New Role for Lipocalin Prostaglandin D Synthase in the Regulation of Brown Adipose Tissue Substrate Utilization
Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
Show others and affiliations
2012 (English)In: Diabetes, ISSN 0012-1797, E-ISSN 1939-327X, Vol. 61, no 12, 3139-3147 p.Article in journal (Refereed) Published
Abstract [en]

In this study, we define a new role for lipocalin prostaglandin D synthase (L-PGDS) in the control of metabolic fuel utilization by brown adipose tissue (BAT). We demonstrate that L-PGDS expression in BAT is positively correlated with BAT activity, upregulated by peroxisome proliferator activated receptor gamma coactivator 1 alpha or 1 beta and repressed by receptor-interacting protein 140. Under cold-acclimated conditions, mice lacking L-PGDS had elevated reliance on carbohydrate to provide fuel for thermogenesis and had increased expression of genes regulating glycolysis mid de novo lipogenesis in BAT. These transcriptional differences were associated with increased lipid content in BAT and a BAT lipid composition enriched with de novo synthesized lipids. Consistent with the concept that lack of L-PGDS increases glucose utilization, mice lacking L-PGDS had improved glucose tolerance after high-fat, feeding. The improved glucose tolerance appeared to be independent of changes in insulin sensitivity, as insulin levels during the glucose tolerance test and insulin, leptin, and adiponectin levels were unchanged. Moreover, L-PGDS knock-out mice exhibited increased expression of genes involved in thermogenesis and increased norepinephrine-stimulated glucose uptake to BAT, suggesting that sympathetically mediated changes in glucose uptake may have improved glucose tolerance. Taken together, these results suggest that L-PGDS plays an important role in the regulation of glucose utilization in vivo. Diabetes 61:3139-3147, 2012

Place, publisher, year, edition, pages
2012. Vol. 61, no 12, 3139-3147 p.
National Category
Endocrinology and Diabetes
Identifiers
URN: urn:nbn:se:su:diva-85533DOI: 10.2337/db12-0015ISI: 000312041700018OAI: oai:DiVA.org:su-85533DiVA: diva2:585953
Note

AuthorCount:17;

Available from: 2013-01-10 Created: 2013-01-08 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Cannon, Barbara
By organisation
Physiology
In the same journal
Diabetes
Endocrinology and Diabetes

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 164 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf