Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cytotoxicity of superoxide dismutase 1 in cultured cells is linked to Zn2+ chelation
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Show others and affiliations
2012 (English)In: PLOS ONE, E-ISSN 1932-6203, Vol. 7, no 4, p. e36104-Article in journal (Refereed) Published
Abstract [en]

Neurodegeneration in protein-misfolding disease is generally assigned to toxic function of small, soluble protein aggregates. Largely, these assignments are based on observations of cultured neural cells where the suspect protein material is titrated directly into the growth medium. In the present study, we use this approach to shed light on the cytotoxic action of the metalloenzyme Cu/Zn superoxide dismutase 1 (SOD1), associated with misfolding and aggregation in amyotrophic lateral sclerosis (ALS). The results show, somewhat unexpectedly, that the toxic species of SOD1 in this type of experimental setting is not an aggregate, as typically observed for proteins implicated in other neuro-degenerative diseases, but the folded and fully soluble apo protein. Moreover, we demonstrate that the toxic action of apoSOD1 relies on the protein's ability to chelate Zn(2+) ions from the growth medium. The decreased cell viability that accompanies this extraction is presumably based on disturbed Zn(2+) homeostasis. Consistently, mutations that cause global unfolding of the apoSOD1 molecule or otherwise reduce its Zn(2+) affinity abolish completely the cytotoxic response. So does the addition of surplus Zn(2+). Taken together, these observations point at a case where the toxic response of cultured cells might not be related to human pathology but stems from the intrinsic limitations of a simplified cell model. There are several ways proteins can kill cultured neural cells but all of these need not to be relevant for neurodegenerative disease.

Place, publisher, year, edition, pages
2012. Vol. 7, no 4, p. e36104-
National Category
Biological Sciences
Research subject
Biochemistry
Identifiers
URN: urn:nbn:se:su:diva-86042DOI: 10.1371/journal.pone.0036104ISI: 000305345200116PubMedID: 22558346OAI: oai:DiVA.org:su-86042DiVA, id: diva2:585956
Available from: 2013-01-10 Created: 2013-01-10 Last updated: 2022-03-23Bibliographically approved
In thesis
1. Zinc in folding and misfolding of SOD1: Implications for ALS
Open this publication in new window or tab >>Zinc in folding and misfolding of SOD1: Implications for ALS
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease causing degeneration of upper and lower motor neurons. Most ALS cases are sporadic; only 6% are associated with mutations in Cu, Zn superoxide dismutase (SOD1). It is believed, however, that sporadic and familiar forms of ALS share a common mechanism, where SOD1 plays an important role: SOD1 knockout mice do not develop ALS, whereas the overexpression of human SOD1 in mice produces ALS-like symptoms. Increasing evidence suggest that the SOD1 structure gains cytotoxic properties, but detailed description of the toxic species is missing. This thesis work is focused on understanding how structural and dynamic properties of SOD1 change along its folding free-energy landscape and indicates the structural hot-spots from where the cytotoxic species may originate. Thus, binding of the zinc controls folding, stability and turnover of SOD1: (i) miscoordination of Zn2+ by the Cu-ligands speeds up folding of the SOD1 core structure, however, it stabilizes SOD1 in a state where both active-site loops IV and VII are unfolded, (ii) coordination of Zn2+ in the Zn-site, induces the folding of loop VII and stabilizes the native and  functional fold of both active-site loops and (iii) the tremendous stability gain due to Zn-site metallation corresponds to a folded state’s lifetime of  > 100 years, thus the cellular lifetime of SOD1 is likely controlled by Zn2+ release, which again is coupled to opening of active-site loops. Hence the active-site loops IV and VII stand out as critical and floppy parts of the SOD1 structure. Moreover, a number of ALS-associated mutations, benign to apo-SOD1 stability, are shown here to affect integrity of active-site loops in holo-SOD1, which, in turn, increases population of SOD1 species with these loops disorganized. Finally, the close relation between SOD1 and Zn2+ can also act in the reverse direction: a perturbed folding free-energy landscape of SOD1 can disturb Zn2+ homeostasis.

Place, publisher, year, edition, pages
Stockholm: Department of Biochemistry and Biophysics, Stockholm University, 2014. p. 64
Keywords
protein stability, protein misfolding, local unfolding, metal binding, energy landscape, protein disease, amyotrophic lateral sclerosis
National Category
Biological Sciences
Research subject
Biochemistry
Identifiers
urn:nbn:se:su:diva-107543 (URN)978-91-7447-939-3 (ISBN)
Public defence
2014-10-21, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.

Available from: 2014-09-29 Created: 2014-09-18 Last updated: 2022-02-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Johansson, Ann-SofiLang, LisaLeinartaitė, LinaDanielsson, JensOliveberg, Mikael

Search in DiVA

By author/editor
Johansson, Ann-SofiLang, LisaLeinartaitė, LinaDanielsson, JensOliveberg, Mikael
By organisation
Department of Biochemistry and Biophysics
In the same journal
PLOS ONE
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 79 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf