Change search
ReferencesLink to record
Permanent link

Direct link
Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode
Show others and affiliations
2012 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 109, no 47, 19103-19107 p.Article in journal (Refereed) Published
Abstract [en]

The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this probe-before-destroy approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as well as the ligand environment, critical for understanding the functional role of redox-active metal sites. K beta(1,3) XES spectra of Mn-II and Mn-2(III,IV) complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to > 100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. The technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II.

Place, publisher, year, edition, pages
2012. Vol. 109, no 47, 19103-19107 p.
Keyword [en]
energy-dispersive XES, K beta emission lines, femtosecond x-ray spectroscopy
National Category
Natural Sciences
URN: urn:nbn:se:su:diva-85530DOI: 10.1073/pnas.1211384109ISI: 000311997200025OAI: diva2:585979


Available from: 2013-01-10 Created: 2013-01-08 Last updated: 2013-01-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Sellberg, Jonas
By organisation
Department of Physics
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 171 hits
ReferencesLink to record
Permanent link

Direct link