Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Long-term volatility measurements of submicron atmospheric aerosol in Hyytiala, Finland
Show others and affiliations
2012 (English)In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 12, no 22, 10771-10786 p.Article in journal (Refereed) Published
Abstract [en]

The volatility of submicron atmospheric aerosol particles was investigated at a boreal forest site in Hyytiala, Finland from January 2008 to May 2010. These long-term observations allowed for studying the seasonal behavior of aerosol evaporation with a special focus on compounds that remained in the aerosol phase at 280 degrees C. The temperature-response of evaporation was also studied by heating the aerosol sample step-wise to six temperatures ranging from 80 degrees C to 280 degrees C. The mass fraction remaining after heating (MFR) was determined from the measured particle number size distributions before and after heating assuming a constant particle density (1.6 g cm(-3)). On average 19% of the total aerosol mass remained in the particulate phase at 280 degrees C. The particles evaporated less at low ambient temperatures during winter as compared with the warmer months. Black carbon (BC) fraction of aerosol mass correlated positively with the MFR at 280 degrees C, but could not explain it completely: most of the time a notable fraction of this nonvolatile residual was something other than BC. Using additional information on ambient meteorological conditions and results from an Aerodyne aerosol mass spectrometer (AMS), the chemical composition of MFR at 280 degrees C and its seasonal behavior was further examined. Correlation analysis with ambient temperature and mass fractions of polycyclic aromatic hydrocarbons (PAHs) indicated that MFR at 280 degrees C is probably affected by anthropogenic emissions. On the other hand, results from the AMS analysis suggested that there may be very low-volatile organics, possibly organonitrates, in the non-volatile (at 280 degrees C) fraction of aerosol mass.

Place, publisher, year, edition, pages
2012. Vol. 12, no 22, 10771-10786 p.
National Category
Meteorology and Atmospheric Sciences
Identifiers
URN: urn:nbn:se:su:diva-87124DOI: 10.5194/acp-12-10771-2012ISI: 000312411300010OAI: oai:DiVA.org:su-87124DiVA: diva2:601532
Note

AuthorCount:14;

Available from: 2013-01-29 Created: 2013-01-28 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Riipinen, Ilona
By organisation
Department of Applied Environmental Science (ITM)
In the same journal
Atmospheric Chemistry And Physics
Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 19 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf