Change search
ReferencesLink to record
Permanent link

Direct link
Synthesis, pharmacological activity evaluation and molecular modeling of new polynuclear heterocyclic compounds containing benzimidazole derivatives
Show others and affiliations
2012 (English)In: Archives of pharmacal research, ISSN 0253-6269, E-ISSN 1976-3786, Vol. 35, no 12, 2063-2075 p.Article in journal (Refereed) Published
Abstract [en]

Novel heterocyclic compounds containing benzimidazole derivatives were synthesized from 2-(1Hbenzimidazol-2-yl) acetonitrile (1) and arylhydrazononitrile derivative 2 was obtained via coupling of 1 with 4-methyl phenyldiazonium salt, which was then reacted with hydroxylamine hydrochloride to give amidooxime derivative 3. This product was cyclized into the corresponding oxadiazole derivative 4 upon reflux in acetic anhydride. Compound 4 was refluxed in DMF in the presence of triethylamine to give the corresponding 5-(1H-benzimidazol-2-yl)-2-p-tolyl-2H-1,2,3-triazol-4-amine 6. Treatment of compound 6 with ethyl chloroformate afforded 2,6-dihydro-2-(4-methylphenyl)-1,2,3-triazolo[4aEuro(3),5aEuro(3)-4',5']pyrimido[1,6-a]benzimidazole-5(4H)-one (8). 1,2-bis(2-cyanomethyl-1H-benzimidazol-1-yl)ethane-1,2-dione (10) was synthesized via the condensation reaction of 2-(1H-benzimidazol-2-yl) acetonitrile (1) and diethyloxalate. The reactivity of compound 10 towards some diamine reagents was studied. The in vitro antimicrobial activity of the synthesized compounds was investigated against several pathogenic bacterial strains such as Escherichia coli O157, Salmonella typhimurium, E. coli O119, S. paratyphi, Pseudomonas aeruginosa, Staphylococcus aureus, Listeria monocytogenes and Bacillus cereus. The results of MIC revealed that compounds 12a-c showed the most effective antimicrobial activity against tested strains. On the other hand, compounds 12a, b exhibited high activity against rotavirus Wa strain while compounds 12b, c exhibited high activity against adenovirus type 7. In silico target prediction, docking and validation of the compounds 12a-c were performed. The dialkylglycine decarboxylase bacterial enzyme was predicted as a potential bacterial target receptor using pharmacophorebased correspondence with previous leads; giving the highest normalized scores and a high correlation docking score with mean inhibition concentrations. A novel binding mechanism was predicted after docking using the MOE software and its validation.

Place, publisher, year, edition, pages
2012. Vol. 35, no 12, 2063-2075 p.
Keyword [en]
Benzimidazole derivatives, Arylhydrazone derivatives, Quinoxaline derivatives, Antiviral activity, Antimicrobial and antifungal activities, Molecular modeling
National Category
Pharmacology and Toxicology
URN: urn:nbn:se:su:diva-87676DOI: 10.1007/s12272-012-1204-6ISI: 000312772900004OAI: diva2:605903


Available from: 2013-02-15 Created: 2013-02-14 Last updated: 2013-02-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Abdel-Rehim, Mohamed E.
By organisation
Department of Analytical Chemistry
In the same journal
Archives of pharmacal research
Pharmacology and Toxicology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 28 hits
ReferencesLink to record
Permanent link

Direct link