Change search
ReferencesLink to record
Permanent link

Direct link
Environmental and physical controls on northern terrestrial methane emissions across permafrost zones
Stockholm University, Faculty of Science, Department of Geological Sciences.
2013 (English)In: Global Change Biology, ISSN 1354-1013, E-ISSN 1365-2486, Vol. 19, no 2, 589-603 p.Article in journal (Refereed) Published
Abstract [en]

Methane (CH4) emissions from the northern high-latitude region represent potentially significant biogeochemical feedbacks to the climate system. We compiled a database of growing-season CH4 emissions from terrestrial ecosystems located across permafrost zones, including 303 sites described in 65 studies. Data on environmental and physical variables, including permafrost conditions, were used to assess controls on CH4 emissions. Water table position, soil temperature, and vegetation composition strongly influenced emissions and had interacting effects. Sites with a dense sedge cover had higher emissions than other sites at comparable water table positions, and this was an effect that was more pronounced at low soil temperatures. Sensitivity analysis suggested that CH4 emissions from ecosystems where the water table on average is at or above the soil surface (wet tundra, fen underlain by permafrost, and littoral ecosystems) are more sensitive to variability in soil temperature than drier ecosystems (palsa dry tundra, bog, and fen), whereas the latter ecosystems conversely are relatively more sensitive to changes of the water table position. Sites with near-surface permafrost had lower CH4 fluxes than sites without permafrost at comparable water table positions, a difference that was explained by lower soil temperatures. Neither the active layer depth nor the organic soil layer depth was related to CH4 emissions. Permafrost thaw in lowland regions is often associated with increased soil moisture, higher soil temperatures, and increased sedge cover. In our database, lowland thermokarst sites generally had higher emissions than adjacent sites with intact permafrost, but emissions from thermokarst sites were not statistically higher than emissions from permafrost-free sites with comparable environmental conditions. Overall, these results suggest that future changes to terrestrial high-latitude CH4 emissions will be more proximately related to changes in moisture, soil temperature, and vegetation composition than to increased availability of organic matter following permafrost thaw.

Place, publisher, year, edition, pages
2013. Vol. 19, no 2, 589-603 p.
Keyword [en]
Methane, permafrost, sedges, static chambers, tundra, wetlands
National Category
Ecology Environmental Sciences
URN: urn:nbn:se:su:diva-88261DOI: 10.1111/gcb.12071ISI: 000314219200023OAI: diva2:611060


Available from: 2013-03-14 Created: 2013-03-12 Last updated: 2013-03-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Crill, Patrick M.
By organisation
Department of Geological Sciences
In the same journal
Global Change Biology
EcologyEnvironmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 22 hits
ReferencesLink to record
Permanent link

Direct link