Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Decomposition of modules over the Weyl algebra
Stockholm University, Faculty of Science, Department of Mathematics.
2013 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The thesis consists of two papers that treat decomposition of modules over the Weyl algebra. In the first paper decomposition of holonomic modules is used to prove that there is a finite set of Noetherian operators that suffice to distinguish the elements in a primary ideal. In the second the decomposition of the direct image of the root-to-coefficients mapping are constructed using the representation theory of the symmetric group, in particular higher Specht polynomials.

Place, publisher, year, edition, pages
Institutionen för matematik, 2013. , 32 p.
National Category
Mathematics
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:su:diva-88465OAI: oai:DiVA.org:su-88465DiVA: diva2:611460
Presentation
2013-04-16, sal 14, hus 5 Kräftriket, Roslagsvägen 101, Stockholm, 13:00 (English)
Opponent
Supervisors
Available from: 2013-04-11 Created: 2013-03-15 Last updated: 2017-11-27Bibliographically approved

Open Access in DiVA

No full text

By organisation
Department of Mathematics
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 1936 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf