Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt262",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt1632",{id:"formSmash:j_idt1632",widgetVar:"widget_formSmash_j_idt1632",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

No full text in DiVA
#### Other links

Publisher's full text
#### Authority records

Britton, TomTrapman, Pieter
#### Search in DiVA

##### By author/editor

Britton, TomTrapman, Pieter
##### By organisation

Department of Mathematics
##### In the same journal

Journal of Applied Probability
On the subject

Probability Theory and Statistics
#### Search outside of DiVA

GoogleGoogle ScholarfindCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1969",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[1,1,2,1,1,1,4,1,1,3]],title:"Visits for this publication",axes:{yaxis: {label:"",min:0,max:10,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}},xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}}},series:[{label:'diva2:612177'}],ticks:["Feb -20","Aug -20","Sep -20","Jan -22","Mar -22","Jun -22","Sep -22","Nov -22","Dec -22","Aug -23"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 92 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt2075",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt221",{id:"formSmash:upper:j_idt221",widgetVar:"widget_formSmash_upper_j_idt221",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt225_j_idt231",{id:"formSmash:upper:j_idt225:j_idt231",widgetVar:"widget_formSmash_upper_j_idt225_j_idt231",target:"formSmash:upper:j_idt225:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Maximizing the size of the giantPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2012 (English)In: Journal of Applied Probability, ISSN 0021-9002, E-ISSN 1475-6072, Vol. 49, no 4, p. 1156-1165Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2012. Vol. 49, no 4, p. 1156-1165
##### Keywords [en]

Random graph, branching process, epidemiology
##### National Category

Probability Theory and Statistics
##### Identifiers

URN: urn:nbn:se:su:diva-88295DOI: 10.1239/jap/1354716664ISI: 000313538400018OAI: oai:DiVA.org:su-88295DiVA, id: diva2:612177
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt728",{id:"formSmash:j_idt728",widgetVar:"widget_formSmash_j_idt728",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt747",{id:"formSmash:j_idt747",widgetVar:"widget_formSmash_j_idt747",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt757",{id:"formSmash:j_idt757",widgetVar:"widget_formSmash_j_idt757",multiple:true}); Available from: 2013-03-20 Created: 2013-03-12 Last updated: 2022-02-24Bibliographically approved

Consider a random graph where the mean degree is given and fixed. In this paper we derive the maximal size of the largest connected component in the graph. We also study the related question of the largest possible outbreak size of an epidemic occurring 'on' the random graph (the graph describing the social structure in the community). More precisely, we look at two different classes of random graphs. First, the Poissonian random graph in which each node i is given an independent and identically distributed (i.i.d.) random weight X-i with E(X-i) = mu, and where there is an edge between i and j with probability 1 - e(-XiXj/(mu n)), independently of other edges. The second model is the thinned configuration model in which then vertices of the ground graph have i.i.d. ground degrees, distributed as D, with E(D) = mu. The graph of interest is obtained by deleting edges independently with probability 1 - p. In both models the fraction of vertices in the largest connected component converges in probability to a constant 1 - q, where q depends on X or D and p. We investigate for which distributions X and D with given mu and p, 1 - q is maximized. We show that in the class of Poissonian random graphs, X should have all its mass at 0 and one other real, which can be explicitly determined. For the thinned configuration model, D should have all its mass at 0 and two subsequent positive integers.

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1994",{id:"formSmash:j_idt1994",widgetVar:"widget_formSmash_j_idt1994",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2056",{id:"formSmash:lower:j_idt2056",widgetVar:"widget_formSmash_lower_j_idt2056",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2057_j_idt2059",{id:"formSmash:lower:j_idt2057:j_idt2059",widgetVar:"widget_formSmash_lower_j_idt2057_j_idt2059",target:"formSmash:lower:j_idt2057:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});