Change search
ReferencesLink to record
Permanent link

Direct link
Interaction of chemical and physical processes during deformation at fluid-present conditions: a case study from an anorthosite leucogabbro deformed at amphibolite facies conditions
Stockholm University, Faculty of Science, Department of Geological Sciences.
Stockholm University, Faculty of Science, Department of Geological Sciences.
2013 (English)In: Contributions to Mineralogy and Petrology, ISSN 0010-7999, E-ISSN 1432-0967, Vol. 165, no 3, 543-562 p.Article in journal (Refereed) Published
Abstract [en]

We present microstructural and chemical analyses of chemically zoned and recrystallized plagioclase grains in variably strained samples of a naturally deformed anorthosite-leucogabbro, southern West Greenland. The recorded microstructures formed in the presence of fluids at mid-crustal conditions (620-640 A degrees C, 7.4-8.6 kbar). Recrystallized plagioclase grains (average grain size 342 mu m) with a random crystallographic orientation are volumetrically dominant in high-strain areas. They are characterized by asymmetric chemical zoning (An(80) cores and An(64) rims) that are directly associated with areas exhibiting high amphibole content and phase mixing. Analyses of zoning indicate anisotropic behaviour of bytownite plagioclase with a preferred replacement in the direction and along the (001) plane. In areas of high finite strain, recrystallization of plagioclase dominantly occurred by bulging recrystallization and is intimately linked to the chemical zoning. The lack of CPO as well as the developed asymmetric zoning can be explained by the activity of grain boundary sliding accommodated by dissolution and precipitation creep (DPC). In low-strain domains, grain size is on average larger and the rim distribution is not related to the inferred stress axes indicating chemically induced grain replacement instead of stress-related DPC. We suggest that during deformation, in high-strain areas, pre-existing phase mixture and stress induced DPC-caused grain rotations that allowed a deformation-enhanced heterogeneous fluid influx. This resulted in local plagioclase replacement through interface-coupled dissolution and precipitation and chemically induced grain boundary migration, accompanied by bulging recrystallization, along with neocrystallization of other phases. This study illustrates a strong interaction and feedback between physical and chemical processes where the amount of stress and fluids dictates the dominant active process. The interaction is a cause of deformation and external fluid infiltration with a result of strain localization and chemical re-equilibration at amphibolite facies conditions.

Place, publisher, year, edition, pages
2013. Vol. 165, no 3, 543-562 p.
Keyword [en]
Plagioclase, Recrystallization, Fluid-rock interaction, Chemically induced grain boundary migration, Interface-coupled dissolution and precipitation, Electron backscatter diffraction (EBSD)
National Category
Geochemistry Geophysics
URN: urn:nbn:se:su:diva-88702DOI: 10.1007/s00410-012-0822-9ISI: 000315034600008OAI: diva2:612874
Knut and Alice Wallenberg Foundation


Available from: 2013-03-25 Created: 2013-03-25 Last updated: 2013-03-25Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Svahnberg, HenrikPiazolo, Sandra
By organisation
Department of Geological Sciences
In the same journal
Contributions to Mineralogy and Petrology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 32 hits
ReferencesLink to record
Permanent link

Direct link