Change search
ReferencesLink to record
Permanent link

Direct link
The Conserved Phenylalanine in the K+ Channel Voltage-Sensor Domain Creates a Barrier with Unidirectional Effects
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
2013 (English)In: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 104, no 1, 75-84 p.Article in journal (Refereed) Published
Abstract [en]

Voltage-gated ion channels are crucial for regulation of electric activity of excitable tissues such as nerve cells, and play important roles in many diseases. During activation, the charged S4 segment in the voltage sensor domain translates across a hydrophobic core forming a barrier for the gating charges. This barrier is critical for channel function, and a conserved phenylalanine in segment S2 has previously been identified to be highly sensitive to substitutions. Here, we have studied the kinetics of K(v)1-type potassium channels (Shaker and K(v)1.2/2.1 chimera) through site-directed mutagenesis, electrophysiology, and molecular simulations. The F290L mutation in Shaker (F233L in K(v)1.2/2.1) accelerates channel closure by at least a factor 50, although opening is unaffected. Free energy profiles with the hydrophobic neighbors of F233 mutated to alanine indicate that the open state with the fourth arginine in S4 above the hydrophobic core is destabilized by similar to 17 kJ/mol compared to the first closed intermediate. This significantly lowers the barrier of the first deactivation step, although the last step of activation,is unaffected. Simulations of wild-type F233 show that the phenyl ring always rotates toward the extracellular side both for activation and deactivation, which appears to help stabilize a well-defined open state.

Place, publisher, year, edition, pages
2013. Vol. 104, no 1, 75-84 p.
National Category
Biological Sciences
URN: urn:nbn:se:su:diva-88358DOI: 10.1016/j.bpj.2012.11.3827ISI: 000313541200010OAI: diva2:612956


Available from: 2013-03-25 Created: 2013-03-13 Last updated: 2013-03-25Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Lindahl, Erik
By organisation
Department of Biochemistry and Biophysics
In the same journal
Biophysical Journal
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 14 hits
ReferencesLink to record
Permanent link

Direct link