Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Lightweight and Strong Cellulose Materials Made from Aqueous Foams Stabilized by Nanofibrillated Cellulose
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Show others and affiliations
2013 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 14, no 2, 503-511 p.Article in journal (Refereed) Published
Abstract [en]

A lightweight and strong porous cellulose material has been prepared by drying aqueous foams stabilized with surface-modified nanofibrillated cellulose (NFC). This material differs from other dry, particle stabilized foams in that renewable cellulose is used as stabilizing particles. Confocal microscopy and high speed video imaging show that the octylamine-coated, rod-shaped NFC nanoparticles residing at the air-liquid interface prevent the air bubbles from collapsing or coalescing. Stable wet foams can be achieved at solids content around 1% by weight. Careful removal of the water results in a cellulose-based material with a porosity of 98% and a density of 30 mg cm(-3). These porous cellulose materials have a higher Young's modulus than porous cellulose materials made from freeze-drying, at comparable densities, and have a compressive energy absorption of 56 kJ m(-3) at 80% strain. Measurement with the aid of an autoporosimeter revealed that most pores are in the range of 300 to 500 mu m.

Place, publisher, year, edition, pages
2013. Vol. 14, no 2, 503-511 p.
National Category
Biochemistry and Molecular Biology Organic Chemistry Polymer Chemistry
Identifiers
URN: urn:nbn:se:su:diva-88679DOI: 10.1021/bm301755uISI: 000314908500025OAI: oai:DiVA.org:su-88679DiVA: diva2:613014
Note

AuthorCount:6;

Available from: 2013-03-26 Created: 2013-03-25 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Bergström, Lennart
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Biomacromolecules
Biochemistry and Molecular BiologyOrganic ChemistryPolymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 129 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf