CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt184",{id:"formSmash:upper:j_idt184",widgetVar:"widget_formSmash_upper_j_idt184",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt192_j_idt200",{id:"formSmash:upper:j_idt192:j_idt200",widgetVar:"widget_formSmash_upper_j_idt192_j_idt200",target:"formSmash:upper:j_idt192:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Combinatorial Methods in Complex AnalysisPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2013 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: Department of Mathematics, Stockholm University , 2013. , p. 111
##### Keyword [en]

combinatorics, Schrödinger equation, Toeplitz matrix, sums of squares, Schur polynomials
##### National Category

Mathematics
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-88808ISBN: 978-91-7447-684-2 (print)OAI: oai:DiVA.org:su-88808DiVA, id: diva2:613664
##### Public defence

2013-05-30, Lecture hall 14, House 5, Kräftriket, Roslagsvägen 101, Stockholm, 13:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt987",{id:"formSmash:j_idt987",widgetVar:"widget_formSmash_j_idt987",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1004",{id:"formSmash:j_idt1004",widgetVar:"widget_formSmash_j_idt1004",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1012",{id:"formSmash:j_idt1012",widgetVar:"widget_formSmash_j_idt1012",multiple:true});
##### Note

##### List of papers

The theme of this thesis is combinatorics, complex analysis and algebraic geometry. The thesis consists of six articles divided into four parts.

**Part A:** *Spectral properties of the Schrödinger equation*

This part consists of Papers I-II, where we study a univariate Schrödinger equation with a complex polynomial potential. We prove that the set of polynomial potentials that admit solutions to the Schrödingerequation is connected, under certain boundary conditions. We also study a similar result for even polynomial potentials, where a similar result is obtained.

**Part B:** *Graph monomials and sums of squares*

In this part, consisting of Paper III, we study natural bases for the space of homogeneous, symmetric and translation-invariant polynomials in terms of multigraphs. We find all multigraphs with at most six edges that give rise to non-negative polynomials, and which of these that can be expressed as a sum of squares. Such polynomials appear naturally in connection to expressing certain non-negative polynomials as sums of squares.

**Part C:** *Eigenvalue asymptotics of banded Toeplitz matrices*

This part consists of Papers IV-V. We give a new and generalized proof of a theorem by P. Schmidt and F. Spitzer concerning asymptotics of eigenvalues of Toeplitz matrices. We also generalize the notion of eigenvalues to rectangular matrices, and partially prove the a multivariate analogue of the above.

**Part D:** *Stretched Schur polynomials *

This part consists of Paper VI, where we give a combinatorial proof that certain sequences of skew Schur polynomials satisfy linear recurrences with polynomial coefficients.

At the time of doctoral defence the following papers were unpublished and had a status as follows: Paper 5: Manuscript; Paper 6: Manuscript

Available from: 2013-05-08 Created: 2013-03-30 Last updated: 2013-05-06Bibliographically approved1. On Eigenvalues of the Schrödinger Operator with a Complex-Valued Polynomial Potential$(function(){PrimeFaces.cw("OverlayPanel","overlay612384",{id:"formSmash:j_idt1073:0:j_idt1098",widgetVar:"overlay612384",target:"formSmash:j_idt1073:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. On Eigenvalues of the Schrodinger Operator with an Even Complex-Valued Polynomial Potential$(function(){PrimeFaces.cw("OverlayPanel","overlay611248",{id:"formSmash:j_idt1073:1:j_idt1098",widgetVar:"overlay611248",target:"formSmash:j_idt1073:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Discriminants, Symmetrized Graph monomials and Sums of Squares$(function(){PrimeFaces.cw("OverlayPanel","overlay581344",{id:"formSmash:j_idt1073:2:j_idt1098",widgetVar:"overlay581344",target:"formSmash:j_idt1073:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Schur polynomials, banded Toeplitz matrices and Widom's formula$(function(){PrimeFaces.cw("OverlayPanel","overlay577130",{id:"formSmash:j_idt1073:3:j_idt1098",widgetVar:"overlay577130",target:"formSmash:j_idt1073:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Around multivariate Schmidt-Spitzer theorem$(function(){PrimeFaces.cw("OverlayPanel","overlay612389",{id:"formSmash:j_idt1073:4:j_idt1098",widgetVar:"overlay612389",target:"formSmash:j_idt1073:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

6. Stretched skew Schur polynomials are recurrent$(function(){PrimeFaces.cw("OverlayPanel","overlay612387",{id:"formSmash:j_idt1073:5:j_idt1098",widgetVar:"overlay612387",target:"formSmash:j_idt1073:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt2096",{id:"formSmash:j_idt2096",widgetVar:"widget_formSmash_j_idt2096",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2149",{id:"formSmash:lower:j_idt2149",widgetVar:"widget_formSmash_lower_j_idt2149",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2150_j_idt2152",{id:"formSmash:lower:j_idt2150:j_idt2152",widgetVar:"widget_formSmash_lower_j_idt2150_j_idt2152",target:"formSmash:lower:j_idt2150:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});