Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modeling Covariate-Contingent Correlation  and Tail-Dependence with Copulas
Stockholm University, Faculty of Social Sciences, Department of Statistics.
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Copula functions give an approach of constructing multivariate densities with  flexible combinations of distinct marginal distributions and also measures  degrees of dependence in the tail and correlations of the marginal  distributions via a novel strategy. Nevertheless common approaches of  estimating tail dependence and correlations are through nuisance parameters  which yields the final results neither tractable nor interpretable for  practitioners. In this paper we address the problem by presenting a general  Bayesian approach for directly modeling covariate-linked tail dependence and  correlations. Posterior inference is carried out using a novel and efficient  simulation method.

Keyword [en]
Covariate-dependent copula, tail-dependence, Kendall's tau, MCMC, Bayesian variable selection
National Category
Probability Theory and Statistics
Research subject
Statistics
Identifiers
URN: urn:nbn:se:su:diva-89506OAI: oai:DiVA.org:su-89506DiVA: diva2:618568
Available from: 2013-04-29 Created: 2013-04-29 Last updated: 2013-05-02Bibliographically approved
In thesis
1. Bayesian Modeling of Conditional Densities
Open this publication in new window or tab >>Bayesian Modeling of Conditional Densities
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis develops models and associated Bayesian inference methods for flexible univariate and multivariate conditional density estimation. The models are flexible in the sense that they can capture widely differing shapes of the data. The estimation methods are specifically designed to achieve flexibility while still avoiding overfitting. The models are flexible both for a given covariate value, but also across covariate space. A key contribution of this thesis is that it provides general approaches of density estimation with highly efficient Markov chain Monte Carlo methods. The methods are illustrated on several challenging non-linear and non-normal datasets.

In the first paper, a general model is proposed for flexibly estimating the density of a continuous response variable conditional on a possibly high-dimensional set of covariates. The model is a finite mixture of asymmetric student-t densities with covariate-dependent mixture weights. The four parameters of the components, the mean, degrees of freedom, scale and skewness, are all modeled as functions of the covariates. The second paper explores how well a smooth mixture of symmetric components can capture skewed data. Simulations and applications on real data show that including covariate-dependent skewness in the components can lead to substantially improved performance on skewed data, often using a much smaller number of components. We also introduce smooth mixtures of gamma and log-normal components to model positively-valued response variables. In the third paper we propose a multivariate Gaussian surface regression model that combines both additive splines and interactive splines, and a highly efficient MCMC algorithm that updates all the multi-dimensional knot locations jointly. We use shrinkage priors to avoid overfitting with different estimated shrinkage factors for the additive and surface part of the model, and also different shrinkage parameters for the different response variables. In the last paper we present a general Bayesian approach for directly modeling dependencies between variables as function of explanatory variables in a flexible copula context. In particular, the Joe-Clayton copula is extended to have covariate-dependent tail dependence and correlations. Posterior inference is carried out using a novel and efficient simulation method. The appendix of the thesis documents the computational implementation details.

Place, publisher, year, edition, pages
Stockholm: Department of Statistics, Stockholm University, 2013. 13 p.
Keyword
Bayesian inference, Density estimation, smooth mixtures, surface regression, copulas, Markov chain Monte Carlo
National Category
Probability Theory and Statistics
Research subject
Statistics
Identifiers
urn:nbn:se:su:diva-89426 (URN)978-91-7447-665-1 (ISBN)
Public defence
2013-06-10, William-Olssonsalen, Geovetenskapens hus, Svante Arrhenius väg 14, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: In press. Paper 4: Manuscript.

Available from: 2013-05-16 Created: 2013-04-24 Last updated: 2013-05-06Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Li, Feng
By organisation
Department of Statistics
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 103 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf