Change search
ReferencesLink to record
Permanent link

Direct link
Positional editing of transmembrane domains during ion channel assembly
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Show others and affiliations
2013 (English)In: Journal of Cell Science, ISSN 0021-9533, E-ISSN 1477-9137, Vol. 126, no 2, 464-472 p.Article in journal (Refereed) Published
Abstract [en]

The integration of transmembrane (TM)-spanning regions of many channels and ion transporters is potentially compromised by the presence of polar and charged residues required for biological function. Although the two TMs of the ATP-gated ion channel subunit P2X2 each contain charged/polar amino acids, we found that each TM is efficiently membrane inserted when it is analysed in isolation, and uncovered no evidence for cooperativity between these two TMs during P2X2 integration. However, using minimal N-glycosylation distance mapping, we find that the positioning of TM2 in newly synthesized P2X2 monomers is distinct from that seen in subunits of the high-resolution structures of assembled homologous trimers. We conclude that P2X2 monomers are initially synthesised at the endoplasmic reticulum in a distinct conformation, where the extent of the TM-spanning regions is primarily defined by the thermodynamic cost of their membrane integration at the Sec61 translocon. In this model, TM2 of P2X2 subsequently undergoes a process of positional editing within the membrane that correlates with trimerisation of the monomer, a process requiring specific polar/charged residues in both TM1 and TM2. We postulate that the assembly process offsets any energetic cost of relocating TM2, and find evidence that positional editing of TM2 in the acid-sensing ion channel (ASIC1a) is even more pronounced than that observed for P2X2. Taken together, these data further underline the potential complexities involved in accurately predicting TM domains. We propose that the orchestrated repositioning of TM segments during subunit oligomerisation plays an important role in generating the functional architecture of active ion channels, and suggest that the regulation of this underappreciated biosynthetic step may provide an elegant mechanism for maintaining ER homeostasis.

Place, publisher, year, edition, pages
2013. Vol. 126, no 2, 464-472 p.
Keyword [en]
ASIC, Endoplasmic reticulum, Membrane insertion, Oligomerisation, P2X channels
National Category
Cell Biology
URN: urn:nbn:se:su:diva-89741DOI: 10.1242/jcs.111773ISI: 000316945600010OAI: diva2:619985
Swedish Cancer Society, 120837Swedish Research Council, 621-2010-5250Swedish Foundation for Strategic Research , A3-05:200EU, European Research Council, ERC-2008-AdG 232648


Available from: 2013-05-07 Created: 2013-05-06 Last updated: 2013-05-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Öjemalm, Karinvon Heijne, Gunnar
By organisation
Department of Biochemistry and Biophysics
In the same journal
Journal of Cell Science
Cell Biology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 20 hits
ReferencesLink to record
Permanent link

Direct link