Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rapid X-ray Photoreduction of Dimetal-Oxygen Cofactors in Ribonucleotide Reductase
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Show others and affiliations
2013 (English)In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 288, no 14, p. 9648-9661Article in journal (Refereed) Published
Abstract [en]

Prototypic dinuclear metal cofactors with varying metallation constitute a class of O-2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III) Fe(III) and Mn(III)-Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III, II) and (II, II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II, II) states are reached in < 1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II, II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II, II) cofactors, which deviate from the native structures functional in O-2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques.

Place, publisher, year, edition, pages
2013. Vol. 288, no 14, p. 9648-9661
National Category
Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:su:diva-89863DOI: 10.1074/jbc.M112.438796ISI: 000317114000008OAI: oai:DiVA.org:su-89863DiVA, id: diva2:621409
Note

AuthorCount:6;

Available from: 2013-05-14 Created: 2013-05-14 Last updated: 2022-03-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Gräslund, Astrid

Search in DiVA

By author/editor
Gräslund, Astrid
By organisation
Department of Biochemistry and Biophysics
In the same journal
Journal of Biological Chemistry
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 65 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf