Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Monte Carlo-based treatment planning tool for proton therapy
Stockholm University, Faculty of Science, Department of Physics. Karolinska Institutet.
Show others and affiliations
2013 (English)In: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 58, no 8, 2471-2490 p.Article in journal (Refereed) Published
Abstract [en]

In the field of radiotherapy, Monte Carlo (MC) particle transport calculations are recognized for their superior accuracy in predicting dose and fluence distributions in patient geometries compared to analytical algorithms which are generally used for treatment planning due to their shorter execution times. In this work, a newly developed MC-based treatment planning (MCTP) tool for proton therapy is proposed to support treatment planning studies and research applications. It allows for single-field and simultaneous multiple-field optimization in realistic treatment scenarios and is based on the MC code FLUKA. Relative biological effectiveness (RBE)-weighted dose is optimized either with the common approach using a constant RBE of 1.1 or using a variable RBE according to radiobiological input tables. A validated reimplementation of the local effect model was used in this work to generate radiobiological input tables. Examples of treatment plans in water phantoms and in patient-CT geometries together with an experimental dosimetric validation of the plans are presented for clinical treatment parameters as used at the Italian National Center for Oncological Hadron Therapy. To conclude, a versatile MCTP tool for proton therapy was developed and validated for realistic patient treatment scenarios against dosimetric measurements and commercial analytical TP calculations. It is aimed to be used in future for research and to support treatment planning at state-of-the-art ion beam therapy facilities.

Place, publisher, year, edition, pages
2013. Vol. 58, no 8, 2471-2490 p.
National Category
Radiology, Nuclear Medicine and Medical Imaging Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-89856DOI: 10.1088/0031-9155/58/8/2471ISI: 000317185600007OAI: oai:DiVA.org:su-89856DiVA: diva2:621441
Conference
3rd European Workshop on Monte Carlo Treatment Planning (MCTP), MAY 15-18, 2012, Seville, SPAIN
Note

AuthorCount:9;

Available from: 2013-05-14 Created: 2013-05-14 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Böhlen, Till Tobias
By organisation
Department of Physics
In the same journal
Physics in Medicine and Biology
Radiology, Nuclear Medicine and Medical ImagingPhysical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 34 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf