Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Tailor-Made Molecular Ruthenium Catalyst for the Oxidation of Water and Its Deactivation through Poisoning by Carbon Monoxide
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). China University of Geosciences .
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Show others and affiliations
2013 (English)In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 52, no 15, 4189-4193 p.Article in journal (Refereed) Published
Place, publisher, year, edition, pages
2013. Vol. 52, no 15, 4189-4193 p.
Keyword [en]
energy conversion, homogeneous catalysis, oxidation of water, oxygen evolution, ruthenium
National Category
Organic Chemistry
Research subject
Organic Chemistry
Identifiers
URN: urn:nbn:se:su:diva-90011DOI: 10.1002/anie.201210226ISI: 000317064600021OAI: oai:DiVA.org:su-90011DiVA: diva2:622046
Funder
Knut and Alice Wallenberg FoundationSwedish Research CouncilVinnova
Note

AuthorCount:5;

Available from: 2013-05-20 Created: 2013-05-20 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Development and Mechanistic Studies of Molecularly Defined Water Oxidation Catalysts: Catalysts for a Green and Sustainable Future
Open this publication in new window or tab >>Development and Mechanistic Studies of Molecularly Defined Water Oxidation Catalysts: Catalysts for a Green and Sustainable Future
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis deals with the development of complexes that are active catalysts for H2O oxidation. Promoting proton-coupled electron transfer has been a highly important feature in the development of these catalysts.

The first part deals with the modification of ligand frameworks for the development of a ruthenium complex capable of withstanding the highly oxidizing conditions required for H2O oxidation. 

The second part of the thesis describes the development of two single-site ruthenium(III) complexes, housing two meridionally coordinating tridentate benzimidazole ligands. Studies on these complexes revealed that they can mediate H2O oxidation, both by the use of a chemical oxidant and photochemically, and that the ligand frameworks were important in promoting proton-coupled electron transfer events.

In the third part, systematic modifications are introduced into one of the catalysts developed in the second part of the thesis. All of the complexes were shown to be active water oxidation catalysts (WOCs), and kinetic studies confirmed that all catalysts displayed a first-order dependence on catalyst concentration, thereby validating that H2O oxidation occurs on a single metal site. By using linear free-energy relationships it was possible to elucidate the unusual behavior exerted by the ligand framework during the catalytic cycle.

The fourth part concerns the development of a ruthenium(III) WOC, containing a tetradentate bioinspired ligand architecture, and its deactivation pathway during H2O oxidation catalysis. This revealed an unexplored, and perhaps general, deactivation pathway for ruthenium-based WOCs. Evidence was also found that the ruthenium WOC reaches a high-valent ruthenium(VI) state which is the active species in H2O oxidation.

Finally, the fifth and last part deals with the development of a dinuclear manganese complex. Utilizing a bioinspired, highly functionalized ligand, enabled the formation of the first homogeneous manganese-based WOC capable of promoting catalytic H2O oxidation with one-electron oxidants.

Place, publisher, year, edition, pages
Stockholm: Department of Organic Chemistry, Stockholm University, 2013. 80 p.
Keyword
artificial photosynthesis, water oxidation, photochemistry, electrochemistry
National Category
Organic Chemistry
Research subject
Organic Chemistry
Identifiers
urn:nbn:se:su:diva-86323 (URN)978-91-7447-626-2 (ISBN)
Public defence
2013-02-22, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.

Available from: 2013-01-31 Created: 2013-01-12 Last updated: 2013-08-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Kärkäs, Markus D.Åkermark, TorbjörnChen, HongSun, JunliangÅkermark, Björn
By organisation
Department of Organic ChemistryDepartment of Materials and Environmental Chemistry (MMK)
In the same journal
Angewandte Chemie International Edition
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 80 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf