CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt156",{id:"formSmash:upper:j_idt156",widgetVar:"widget_formSmash_upper_j_idt156",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt157_j_idt159",{id:"formSmash:upper:j_idt157:j_idt159",widgetVar:"widget_formSmash_upper_j_idt157_j_idt159",target:"formSmash:upper:j_idt157:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

HARDY-PETROVITCH-HUTCHINSON'S PROBLEM AND PARTIAL THETA FUNCTIONPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2013 (English)In: Duke mathematical journal, ISSN 0012-7094, E-ISSN 1547-7398, Vol. 162, no 5, 825-861 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2013. Vol. 162, no 5, 825-861 p.
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-89997DOI: 10.1215/00127094-2087264ISI: 000317533900001OAI: oai:DiVA.org:su-89997DiVA: diva2:622146
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt449",{id:"formSmash:j_idt449",widgetVar:"widget_formSmash_j_idt449",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt456",{id:"formSmash:j_idt456",widgetVar:"widget_formSmash_j_idt456",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt462",{id:"formSmash:j_idt462",widgetVar:"widget_formSmash_j_idt462",multiple:true});
##### Note

In 1907, M. Petrovitch initiated the study of a class of entire functions all whose finite sections (i.e., truncations) are real-rooted polynomials. He was motivated by previous studies of E. Laguerre on uniform limits of sequences of real-rooted polynomials and by an interesting result of G. H. Hardy. An explicit description of this class in terms of the coefficients of a series is impossible since it is determined by an infinite number of discriminant inequalities, one for each degree. However, interesting necessary or sufficient conditions can be formulated. In particular; J. I. Hutchinson has shown that an entire function p(x) = a(0) + a(1)x + ... + a(n)x(n) + ... with strictly positive coefficients has the property that all of its finite segments a(i) x(i) + a(i+1)x(i+1) + ... + a(j)x(j) have only real roots if and only if a(i)(2)/a(i-1)a(i+1) >= 4 for i = 1, 2,.... In the present paper, we give sharp lower bounds on the ratios a(i)(2)/a(i-1)a(i+1) (i = 1, 2,...) for the class considered by M. Petrovitch. In particular, we show that the limit of these minima when i -> infinity equals the inverse of the maximal positive value of the parameter for which the classical partial theta function belongs to the Laguerre-Polya class L - PI. We also explain the relation between Newton's and Hutchinson's inequalities and the logarithmic image of the set of all real-rooted polynomials with positive coefficients.

AuthorCount:2;

Available from: 2013-05-20 Created: 2013-05-20 Last updated: 2017-12-06Bibliographically approved
doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1166",{id:"formSmash:j_idt1166",widgetVar:"widget_formSmash_j_idt1166",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1219",{id:"formSmash:lower:j_idt1219",widgetVar:"widget_formSmash_lower_j_idt1219",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1220_j_idt1222",{id:"formSmash:lower:j_idt1220:j_idt1222",widgetVar:"widget_formSmash_lower_j_idt1220_j_idt1222",target:"formSmash:lower:j_idt1220:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});