Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evolution of primordial magnetic fields from phase transitions
Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Stockholm University, Faculty of Science, Department of Astronomy.ORCID iD: 0000-0002-7304-021X
2013 (English)In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 87, no 8, p. 083007-Article in journal (Refereed) Published
Abstract [en]

We consider the evolution of primordial magnetic fields generated during cosmological, electroweak, or QCD phase transitions. We assume that the magnetic field generation can be described as an injection of magnetic energy to cosmological plasma at a given scale determined by the moment of magnetic field generation. A high Reynolds number ensures strong coupling between the magnetic field and fluid motions. The subsequent evolution of the magnetic field is governed by decaying hydromagnetic turbulence. Both our numerical simulations and a phenomenological description allow us to recover universal'' laws for the decay of magnetic energy and the growth of magnetic correlation length in the turbulent (low-viscosity) regime. In particular, we show that during the radiation-dominated epoch, the energy and correlation length of nonhelical magnetic fields scale as conformal time to the powers -1/2 and +1/2, respectively. For helical magnetic fields, the energy and correlation length scale as conformal time to the powers -1/3 and +2/3, respectively. The universal decay law of the magnetic field implies that the strength of the magnetic field generated during the QCD phase transition could reach similar to 10(-9) G with the present-day correlation length similar to 50 kpc. The fields generated at the electroweak phase transition could be as strong as similar to 10(-10) G with correlation lengths reaching similar to 0.3 kpc. These values of the magnetic fields are consistent with the lower bounds of the extragalactic magnetic fields. DOI: 10.1103/PhysRevD.87.083007

Place, publisher, year, edition, pages
2013. Vol. 87, no 8, p. 083007-
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:su:diva-90181DOI: 10.1103/PhysRevD.87.083007ISI: 000317829200002OAI: oai:DiVA.org:su-90181DiVA, id: diva2:623595
Funder
EU, European Research Council, 227952Swedish Research Council, 621-2007-4064
Note

AuthorCount:4;

Available from: 2013-05-28 Created: 2013-05-28 Last updated: 2022-02-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Brandenburg, Axel

Search in DiVA

By author/editor
Brandenburg, Axel
By organisation
Nordic Institute for Theoretical Physics (Nordita)Department of Astronomy
In the same journal
Physical Review D
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 24 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf