Change search
ReferencesLink to record
Permanent link

Direct link
Analytic Structure and Power-Series Expansion of the Jost Matrix
Univ Pretoria, Dept Phys, Pretoria, South Africa.
Stockholm University, Faculty of Science, Department of Physics.
2013 (English)In: Few-body systems, ISSN 0177-7963, E-ISSN 1432-5411, Vol. 54, no 5-6, 673-683 p.Article in journal (Refereed) Published
Abstract [en]

For the Jost-matrix that describes the multi-channel scattering, the momentum dependencies at all the branching points on the Riemann surface are factorized analytically. The remaining single-valued matrix functions of the energy are expanded in the power-series near an arbitrary point in the complex energy plane. A systematic and accurate procedure has been developed for calculating the expansion coefficients. This makes it possible to obtain an analytic expression for the Jost-matrix (and therefore for the S-matrix) near an arbitrary point on the Riemann surface (within the domain of its analyticity) and thus to locate the resonant states as the S-matrix poles. This approach generalizes the standard effective-range expansion that now can be done not only near the threshold, but practically near an arbitrary point on the Riemann surface of the energy. Alternatively, The semi-analytic (power-series) expression of the Jost matrix can be used for extracting the resonance parameters from experimental data. In doing this, the expansion coefficients can be treated as fitting parameters to reproduce experimental data on the real axis (near a chosen center of expansion E (0)) and then the resulting semi-analytic matrix S(E) can be used at the nearby complex energies for locating the resonances. Similarly to the expansion procedure in the three-dimensional space, we obtain the expansion for the Jost function describing a quantum system in the space of two dimensions (motion on a plane), where the logarithmic branching point is present.

Place, publisher, year, edition, pages
Springer, 2013. Vol. 54, no 5-6, 673-683 p.
Keyword [en]
National Category
Physical Sciences
URN: urn:nbn:se:su:diva-90180DOI: 10.1007/s00601-012-0376-4ISI: 000329181600029OAI: diva2:623598


Funding Agencies:

Carl Trygger foundation;  Magnus Bergvall foundation;  National Research Foundation of South Africa 

Available from: 2013-05-28 Created: 2013-05-28 Last updated: 2014-02-03Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Elander, Nils O.
By organisation
Department of Physics
In the same journal
Few-body systems
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 22 hits
ReferencesLink to record
Permanent link

Direct link