Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ecological Stoichiometry and Density Responses of Plant-Arthropod Communities on Cormorant Nesting Islands
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
2013 (English)In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, no 4, e61772- p.Article in journal (Refereed) Published
Abstract [en]

Seabirds deposit large amounts of nutrient rich guano on their nesting islands. The increased nutrient availability strongly affects plants and consumers. Consumer response differs among taxonomic groups, but mechanisms causing these differences are poorly understood. Ecological stoichiometry might provide tools to understand these mechanisms. ES suggests that nutrient rich taxa are more likely to be nutrient limited than nutrient poorer taxa and are more favored under nutrient enrichment. Here, we quantified differences in the elemental composition of soil, plants, and consumers between islands with and without nesting cormorant colonies and tested predictions made based on ES by relating the elemental composition and the eventual mismatch between consumer and resource stoichiometry to observed density differences among the island categories. We found that nesting cormorants radically changed the soil nutrient content and thereby indirectly plant nutrient content and resource quality to herbivores. In contrast, consumers showed only small differences in their elemental composition among the island categories. While we cannot evaluate the cause of the apparent homeostasis of invertebrates without additional data, we can conclude that from the perspective of the next trophic level, there is no difference in diet quality (in terms of N and P content) between island categories. Thus, bottom-up effects seemed mainly be mediated via changes in resource quantity not quality. Despite a large potential trophic mismatch we were unable to observe any relation between the invertebrate stoichiometry and their density response to nesting cormorant colonies. We conclude that in our system stoichiometry is not a useful predictor of arthropod responses to variation in resource nutrient content. Furthermore, we found no strong evidence that resource quality was a prime determinant of invertebrate densities. Other factors like resource quantity, habitat structure and species interactions might be more important or masked stoichiometric effects.

Place, publisher, year, edition, pages
2013. Vol. 8, no 4, e61772- p.
National Category
Environmental Sciences Ecology Botany
Identifiers
URN: urn:nbn:se:su:diva-90364DOI: 10.1371/journal.pone.0061772ISI: 000318008400091OAI: oai:DiVA.org:su-90364DiVA: diva2:627749
Note

AuthorCount:3;

Available from: 2013-06-12 Created: 2013-06-03 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Kolb, Gundula S.Hambäck, Peter A.
By organisation
Department of Ecology, Environment and Plant Sciences
In the same journal
PLoS ONE
Environmental SciencesEcologyBotany

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf