Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Direct Evidence for Hydrogen Bonding in Glycans: A Combined NMR and Molecular Dynamics Study
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
2013 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 117, no 17, 4860-4869 p.Article in journal (Refereed) Published
Abstract [en]

We introduce the abundant hydroxyl groups of glycans as NMR handle's and structural probes to expand the repertoire of tools for structure function studies on glycans in solution. To this end, we present the facile detection and assignment of hydroxyl groups in a Wide range of sample concentrations (0.5-1700 mM) and temperatures, ranging from -5 to 25 degrees C.,We then exploit this information to directly detect hydrogen bonds, well-known for their importance in molecular structural determination through NMR. Via HSQC-TOCSY, we were able to determine the directionality; of these hydrogen bonds in sucrose Furthermore, by means Of molecular dynamics simulations in conjunction with NMR, we establish that one Out of the three detected hydrogen bonds arises from intermolecular interactions. This finding may shed light on glycan glycan interactions and glycan recognition by proteins.

Place, publisher, year, edition, pages
2013. Vol. 117, no 17, 4860-4869 p.
National Category
Physical Chemistry Organic Chemistry
Research subject
Organic Chemistry
Identifiers
URN: urn:nbn:se:su:diva-91041DOI: 10.1021/jp400402bISI: 000318536700015OAI: oai:DiVA.org:su-91041DiVA: diva2:630485
Funder
Swedish Research Council
Note

AuthorCount:4;

Available from: 2013-06-19 Created: 2013-06-18 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Conformations of Flexible Oligosaccharides: Molecular Simulations and NMR spectroscopy
Open this publication in new window or tab >>Conformations of Flexible Oligosaccharides: Molecular Simulations and NMR spectroscopy
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The conformational preferences of several oligosaccharides are investigated herein using a combination of NMR spectroscopy and molecular dynamics (MD) simulations, focusing on the torsion angles associated with the glycosidic linkages.

Strategies for obtaining usable J-HMBC spectra for carbons with an adjacent 13C label are described. By employing a selective pulse or a constant time modification, spectra free from interferences are obtained for site-specifically 13C labeled oligosaccharides.

Intermolecular hydrogen bonding in sucrose is investigated using MD simulations performed at different concentrations. One of the most frequent intermolecular hydrogen bonds in the simulations, O3f∙∙∙HO3g, was detected using the HSQC-TOCSY NMR experiment.

Based on MD simulations and NMR spectroscopy, the conformational ensemble for a trisaccharide segment of the LeaLex hexasaccharide is proposed to feature conformational exchange between conformations with positive and negative values for the ψ3 torsion angle in the β-D-GlcpNAc-(1→3)-β-D-Galp linkage.

Using MD simulations, the conformation of the N-acetyl group is shown to influence the glycosidic conformation at a nearby linkage in two oligosaccharides.

Short (1→6)-linked oligosaccharides are shown to exhibit conformational exchange at the ω and ψ torsion angles. Notably, the former torsion angle populates states with ψ ≈ ±90°. Conformationally sensitive homo- and heteronuclear coupling constants are determined using various NMR experiments. The experimental data, including effective distances from NOESY obtained for two of the compounds, is used to improve the representation of the ω torsion angle in the CHARMM36 force field.

Place, publisher, year, edition, pages
Stockholm: Department of Organic Chemistry, Stockholm University, 2013. 78 p.
Keyword
Carbohydrates, Oligosaccharide, Conformation, NMR spectroscopy, MD simulations
National Category
Organic Chemistry
Research subject
Organic Chemistry
Identifiers
urn:nbn:se:su:diva-95480 (URN)978-91-7447-808-2 (ISBN)
Public defence
2013-12-13, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Manuscript. Paper 5: Accepted. Paper 6: Manuscript.

Available from: 2013-11-21 Created: 2013-10-29 Last updated: 2015-10-06Bibliographically approved

Open Access in DiVA

fulltext(3207 kB)21 downloads
File information
File name FULLTEXT01.pdfFile size 3207 kBChecksum SHA-512
2f950c7466bf7c6a10d92071ca9f8aa7dbb94c3d808416d2c4e284f8327434b63d1c9a070574b9042f74848ffd4a0f750051f55311957925a23d0458154569bd
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Pendrill, RobertWidmalm, Göran
By organisation
Department of Organic Chemistry
In the same journal
Journal of Physical Chemistry B
Physical ChemistryOrganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 21 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 62 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf