Change search
ReferencesLink to record
Permanent link

Direct link
Probing microscopic material properties inside simulated membranes through spatially resolved three-dimensional local pressure fields and surface tensions
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. University of Virginia. USA.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).
2013 (English)In: Chemistry and Physics of Lipids, ISSN 0009-3084, E-ISSN 1873-2941, Vol. 169, 106-112 p.Article in journal (Refereed) Published
Abstract [en]

Cellular lipid membranes are spatially inhomogeneous soft materials. Materials properties such as pressure and surface tension thus show important microscopic-scale variation that is critical to many biological functions. We present a means to calculate pressure and surface tension in a 3D-resolved manner within molecular-dynamics simulations and show how such measurements can yield important insight. We also present the first corrections to local virial and pressure fields to account for the constraints typically used in lipid simulations that otherwise cause problems in highly oriented systems such as bilayers. Based on simulations of an asymmetric bacterial ion channel in a POPC bilayer, we demonstrate how 3D-resolved pressure can probe for both short-range and long-range effects from the protein on the membrane environment. We also show how surface tension is a sensitive metric for inter-leaflet equilibrium and can be used to detect even subtle imbalances between bilayer leaflets in a membrane-protein simulation. Since surface tension is known to modulate the function of many proteins, this effect is an important consideration for predictions of ion channel function. We outline a strategy by which our local pressure measurements, which we make available within a version of the GROMACS simulation package, may be used to design optimally equilibrated membrane-protein simulations.

Place, publisher, year, edition, pages
2013. Vol. 169, 106-112 p.
Keyword [en]
Lipid bilayer, Molecular dynamics, Lateral pressure, Ion channel
National Category
Biochemistry and Molecular Biology
URN: urn:nbn:se:su:diva-91849DOI: 10.1016/j.chemphyslip.2013.01.001ISI: 000319310800012OAI: diva2:635794
NIH (National Institute of Health), R01GM098304EU, European Research Council, 209825Swedish Foundation for Strategic Research


Available from: 2013-07-05 Created: 2013-07-04 Last updated: 2015-06-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Lindahl, Erik
By organisation
Department of Biochemistry and BiophysicsScience for Life Laboratory (SciLifeLab)
In the same journal
Chemistry and Physics of Lipids
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 21 hits
ReferencesLink to record
Permanent link

Direct link