Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Capacitive readout and gating of superconducting single photon detectors
Stockholm University, Faculty of Science, Department of Physics. Delft University of Technology, The Netherlands.
Show others and affiliations
2013 (English)In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 84, no 5, 053108Article in journal (Refereed) Published
Abstract [en]

We propose and develop a readout scheme for superconducting single-photon detectors based on an integrated circuit, relaxing the need for large bandwidth amplification and resulting in voltage steps proportional to the number of detected photons. We also demonstrate time gating, to filter scattered light in time and reduce dark counts. This could lead to a higher signal-to-noise ratio. The gate pulse is generated on the detection of a photon created by a spontaneous parametric down-conversion source, heralding the presence of a second photon. These two schemes could find applications within advanced multi-array imaging detection systems.

Place, publisher, year, edition, pages
2013. Vol. 84, no 5, 053108
National Category
Physical Sciences
Research subject
Physics
Identifiers
URN: urn:nbn:se:su:diva-92035DOI: 10.1063/1.4805055ISI: 000319999300009OAI: oai:DiVA.org:su-92035DiVA: diva2:637152
Funder
The Wenner-Gren Foundation
Note

AuthorCount:5;

Available from: 2013-07-16 Created: 2013-07-15 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Creation and Detection of Single Photons
Open this publication in new window or tab >>Creation and Detection of Single Photons
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

A growing number of technologies employ quantum properties in order to produce solutions that surpass the performance of conventional devices, or to execute operations that are fundamentally impossible with classical systems alone. In the field of optical quantum information science, photons are utilized to encode, communicate and manipulate information, making them vitally important. While photon production always constitutes the first step in any optical experiment, in the field of quantum information science, the recording of data through the process of photon detection is an equally crucial final step.

This thesis deals with both the single photons generation (based on diamond color defects) and their detection, utilizing a novel type of superconducting detectors. In particular, part one of this thesis is devoted to the construction of custom designed microscope setup, and the development of laboratory experiments, to enable the generation of single photons as well as the investigation of the optical and spin properties of diamond color centers. Confocal microscopy is used for this purpose, as it allows for the identification and addressing of individual color centers that emit only single photons. This microscope also feature an integrated self-built microwave and magnetic hardware setup, which allows for a wide range of spin environment spectroscopy studies. Single photon emission is demonstrated through both photon anti-bunching and Rabi oscillations at room temperature.

The second part of the thesis offers an exploration of superconducting single photon detectors through experiment. Since electronics are an essential part of these detectors, the possibility of using a novel alternative scheme based on capacitive readout combined with fast gating to enable simplified readout is demonstrated. This scheme overcomes the limitations of conventional readout schemes, which require large bandwidth amplification and complex counting electronics. Besides photon detection, the capabilities of these detectors are also expanded to include high-energy particles in the MeV energy range, and the detectors are demonstrated to not only detect single α- and β-particles, but to do so with near unity efficiency. Finally, a multipurpose testing station for superconducting detectors is demonstrated with a central objective of optimizing the coupling efficiency of light to the active area of the detector, as well as to allow for a fast exchange of the optical fiber, thereby facilitating an efficient characterization of the detector. The optimization of this coupling efficiency was demonstrated through proof-of-principle experiments.

Place, publisher, year, edition, pages
Stockholm: Department of Physics, Stockholm University, 2016. 215 p.
National Category
Other Physics Topics
Research subject
Physics
Identifiers
urn:nbn:se:su:diva-127675 (URN)978-91-7649-342-7 (ISBN)
Public defence
2016-05-16, sal FB52, AlbaNova universitetscentrum, Roslagstullsbacken 21, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript.

 

Available from: 2016-04-25 Created: 2016-03-09 Last updated: 2017-02-17Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Azzouz, Hatim
By organisation
Department of Physics
In the same journal
Review of Scientific Instruments
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 46 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf