Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Temporal genetic variability of landed Siganus sutor reveals a mixed stock fishery in coastal Kenya
Stockholm University, Faculty of Science, Department of Zoology, Animal Ecology. Södertörns högskola.ORCID iD: 0000-0002-1893-6320
Södertörns högskola.
Södertörns högskola.
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Artisanal fisheries in Kenya have been in decline since the 1980’s and are currently managed by gear restriction and no take zones. The fishery is a mixed species fishery but the Shoemaker spinefoot (Siganus sutor) comprise a large portion of the total catches. The sustainable use of these resources is dependent on informed assessment and management of the harvested species. In Kenya there is a lack of critical information about landings, fish stock productivity and genetic stock structure, and there is no knowledge of populations size or genetic variation of S. sutor. In this study we used the molecular marker, AFLP to investigate the genetic variation within and between sites of S. sutor landed along the 200 km coast of Kenya. We compared the spatial genetic variation among sites with the within site temporal genetic variation from a single site, adjacent to a number of spawning aggregations. Our results show that the there is genetic variation among the sites (spatial variation) and that the temporal genetic variation with in a six week period was about 1/5 of the spatial genetic variation. We believe these findings to be an important aspect to considered for both future scientific research as well as management.

Keywords [en]
siganus, sutor, aflp, east africa
National Category
Zoology
Research subject
Animal Ecology
Identifiers
URN: urn:nbn:se:su:diva-92571OAI: oai:DiVA.org:su-92571DiVA, id: diva2:639898
Funder
Sida - Swedish International Development Cooperation AgencyAvailable from: 2013-08-11 Created: 2013-08-11 Last updated: 2022-02-24Bibliographically approved
In thesis
1. Genetic connectivity of fish in the Western Indian Ocean
Open this publication in new window or tab >>Genetic connectivity of fish in the Western Indian Ocean
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

An almost unbroken fringing reef runs along the east coast of Africa, the lagoon inside the reef is the foundation of almost all artisanal fisheries. It is a low-tech fishery conducted by many people. Some areas can have up to 19 fishermen per square kilometer. High fishing pressures, coupled with declining fish stocks has led to changes in mean size and reproductive age of many exploited species. There is a vital and urgent need for scientifically based management systems, including the utilization of genetic information to guide management practices.

This thesis aims to investigate the presence of genetic structures in the western Indian Ocean. In order to do that we first investigated the historical patterns of connectivity throughout the region (paper I). In papers II and III we focused on local scale connectivity in Kenya and Tanzania and finally in paper IV we investigate the large-scale contemporary gene flow throughout the Western Indian Ocean. In paper III we also investigate the temporal genetic variation at one site and compare it to the small-scale genetic variation along a stretch of the Kenyan coastline. Some overall conclusions that can be drawn from my body of work are: there are genetic structures present in the western Indian Ocean even though the apparent lack of physical barriers. Major oceanic currents aid evolutionary dispersal patterns. A single geographic site need not be genetically homogenous or temporally stable. Island sites are genetically more homogenous than mainland sites.

In conclusion, there are clear and distinct genetic structures present especially in Siganus sutor, the most targeted fish for the artisanal fishery in East Africa.

Place, publisher, year, edition, pages
Stockholm: Department of Zoology, Stockholm University, 2013. p. 43
Series
Södertörn doctoral dissertations, ISSN 1652-7399 ; 84
Keywords
population genetics, indian ocean, siganus sutor, valamugil buchanani, scarus ghobban, connectivity, aflp, mtDNA, d-loop, CO1
National Category
Zoology
Research subject
Animal Ecology
Identifiers
urn:nbn:se:su:diva-92598 (URN)978-91-7447-729-0 (ISBN)978-91-86069-74-2 (ISBN)
Public defence
2013-09-27, Nordenskiöldsalen, Geovetenskapens hus, Svante Arrhenius väg 12, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
Sida - Swedish International Development Cooperation Agency
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.

Available from: 2013-09-05 Created: 2013-08-12 Last updated: 2022-02-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Henriksson, Oskar

Search in DiVA

By author/editor
Henriksson, Oskar
By organisation
Animal Ecology
Zoology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 123 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf