Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Control of Airway Tube Diameter and Integrity by Secreted Chitin-Binding Proteins in Drosophila
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.ORCID iD: 0000-0002-2933-1351
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.ORCID iD: 0000-0002-9153-6040
2013 (English)In: PLOS ONE, E-ISSN 1932-6203, Vol. 8, no 6, p. e67415-Article in journal (Refereed) Published
Abstract [en]

The transporting function of many branched tubular networks like our lungs and circulatory system depend on the sizes and shapes of their branches. Understanding the mechanisms of tube size control during organ development may offer new insights into a variety of human pathologies associated with stenoses or cystic dilations in tubular organs. Here, we present the first secreted luminal proteins involved in tube diametric expansion in the Drosophila airways. obst-A and gasp are conserved among insect species and encode secreted proteins with chitin binding domains. We show that the widely used tracheal marker 2A12, recognizes the Gasp protein. Analysis of obst-A and gasp single mutants and obst-A; gasp double mutant shows that both genes are primarily required for airway tube dilation. Similarly, Obst-A and Gasp control epidermal cuticle integrity and larval growth. The assembly of the apical chitinous matrix of the airway tubes is defective in gasp and obst-A mutants. The defects become exaggerated in double mutants indicating that the genes have partially redundant functions in chitin structure modification. The phenotypes in luminal chitin assembly in the airway tubes are accompanied by a corresponding reduction in tube diameter in the mutants. Conversely, overexpression of Obst-A and Gasp causes irregular tube expansion and interferes with tube maturation. Our results suggest that the luminal levels of matrix binding proteins determine the extent of diametric growth. We propose that Obst-A and Gasp organize luminal matrix assembly, which in turn controls the apical shapes of adjacent cells during tube diameter expansion.

Place, publisher, year, edition, pages
2013. Vol. 8, no 6, p. e67415-
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-93195DOI: 10.1371/journal.pone.0067415ISI: 000321738400143OAI: oai:DiVA.org:su-93195DiVA, id: diva2:645738
Note

AuthorCount:3;

Available from: 2013-09-05 Created: 2013-09-04 Last updated: 2022-03-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Tsarouhas, VasiliosSamakovlis, Christos

Search in DiVA

By author/editor
Tsarouhas, VasiliosSamakovlis, Christos
By organisation
Department of Molecular Biosciences, The Wenner-Gren Institute
In the same journal
PLOS ONE
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 623 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf