Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Formation and growth of nucleated particles into cloud condensation nuclei: model-measurement comparison
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
Show others and affiliations
2013 (English)In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 13, no 15, p. 7645-7663Article in journal (Refereed) Published
Abstract [en]

Aerosol nucleation occurs frequently in the atmosphere and is an important source of particle number. Observations suggest that nucleated particles are capable of growing to sufficiently large sizes that they act as cloud condensation nuclei (CCN), but some global models have reported that CCN concentrations are only modestly sensitive to large changes in nucleation rates. Here we present a novel approach for using long-term size distribution observations to evaluate a global aerosol model's ability to predict formation rates of CCN from nucleation and growth events. We derive from observations at five locations nucleation-relevant metrics such as nucleation rate of particles at diameter of 3 nm (J(3)), diameter growth rate (GR), particle survival probability (SP), condensation and coagulation sinks, and CCN formation rate (J(100)). These quantities are also derived for a global microphysical model, GEOS-Chem-TOMAS, and compared to the observations on a daily basis. Using GEOS-Chem-TOMAS, we simulate nucleation events predicted by ternary (with a 10(-5) tuning factor) or activation nucleation over one year and find that the model slightly understates the observed annual-average CCN formation mostly due to bias in the nucleation rate predictions, but by no more than 50% in the ternary simulations. At the two locations expected to be most impacted by large-scale regional nucleation, Hyytiala and San Pietro Capofiume, predicted annual-average CCN formation rates are within 34 and 2% of the observations, respectively. Model-predicted annual-average growth rates are within 25% across all sites but also show a slight tendency to underestimate the observations, at least in the ternary nucleation simulations. On days that the growing nucleation mode reaches 100 nm, median single-day survival probabilities to 100 nm for the model and measurements range from less than 1-6% across the five locations we considered; however, this does not include particles that may eventually grow to 100 nm after the first day. This detailed exploration of new particle formation and growth dynamics adds support to the use of global models as tools for assessing the contribution of microphysical processes such as nucleation to the total number and CCN budget.

Place, publisher, year, edition, pages
2013. Vol. 13, no 15, p. 7645-7663
National Category
Meteorology and Atmospheric Sciences
Identifiers
URN: urn:nbn:se:su:diva-93594DOI: 10.5194/acp-13-7645-2013ISI: 000323103900024OAI: oai:DiVA.org:su-93594DiVA, id: diva2:647044
Note

AuthorCount:9;

Funding Agencies:

US Environmental Protection Agency under EPA RD-83337401-0; 

US Environmental Protection Agency under STAR RD-83503501 

Available from: 2013-09-10 Created: 2013-09-10 Last updated: 2022-03-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Riipinen, Ilona

Search in DiVA

By author/editor
Riipinen, Ilona
By organisation
Department of Applied Environmental Science (ITM)
In the same journal
Atmospheric Chemistry And Physics
Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 45 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf