Change search
ReferencesLink to record
Permanent link

Direct link
Epidemiologically Optimal Static Networks from Temporal Network Data
Stockholm University, Faculty of Social Sciences, Department of Sociology. Umeå University, Sweden; Sungkyunkwan University, South Korea.
2013 (English)In: PloS Computational Biology, ISSN 1553-734X, E-ISSN 1553-7358, Vol. 9, no 7, e1003142Article in journal (Refereed) Published
Abstract [en]

One of network epidemiology's central assumptions is that the contact structure over which infectious diseases propagate can be represented as a static network. However, contacts are highly dynamic, changing at many time scales. In this paper, we investigate conceptually simple methods to construct static graphs for network epidemiology from temporal contact data. We evaluate these methods on empirical and synthetic model data. For almost all our cases, the network representation that captures most relevant information is a so-called exponential-threshold network. In these, each contact contributes with a weight decreasing exponentially with time, and there is an edge between a pair of vertices if the weight between them exceeds a threshold. Networks of aggregated contacts over an optimally chosen time window perform almost as good as the exponential-threshold networks. On the other hand, networks of accumulated contacts over the entire sampling time, and networks of concurrent partnerships, perform worse. We discuss these observations in the context of the temporal and topological structure of the data sets.

Place, publisher, year, edition, pages
2013. Vol. 9, no 7, e1003142
National Category
Biochemistry and Molecular Biology Mathematical Analysis
URN: urn:nbn:se:su:diva-93589DOI: 10.1371/journal.pcbi.1003142ISI: 000322320200030OAI: diva2:647158


Available from: 2013-09-10 Created: 2013-09-10 Last updated: 2015-11-27Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Department of Sociology
In the same journal
PloS Computational Biology
Biochemistry and Molecular BiologyMathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 12 hits
ReferencesLink to record
Permanent link

Direct link