Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Measurement of Atmospheric Neutrino Oscillations with IceCube
Stockholm University, Faculty of Science, Department of Physics.
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Show others and affiliations
2013 (English)In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 111, no 8, 081801- p.Article in journal (Refereed) Published
Abstract [en]

We present the first statistically significant detection of neutrino oscillations in the high-energy regime (> 20 GeV) from an analysis of IceCube Neutrino Observatory data collected in 2010 and 2011. This measurement is made possible by the low-energy threshold of the DeepCore detector (similar to 20 GeV) and benefits from the use of the IceCube detector as a veto against cosmic-ray-induced muon background. The oscillation signal was detected within a low-energy muon neutrino sample (20-100 GeV) extracted from data collected by DeepCore. A high-energy muon neutrino sample (100 GeV-10 TeV) was extracted from IceCube data to constrain systematic uncertainties. The disappearance of low-energy upward-going muon neutrinos was observed, and the nonoscillation hypothesis is rejected with more than 5 sigma significance. In a two-neutrino flavor formalism, our data are best described by the atmospheric neutrino oscillation parameters vertical bar Delta m(32)(2)vertical bar = (2.3(-0.5)(+0.6)) x 10(-3) eV(2) and sin(2) (2 theta(23)) > 0.93, and maximum mixing is favored.

Place, publisher, year, edition, pages
2013. Vol. 111, no 8, 081801- p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-93757DOI: 10.1103/PhysRevLett.111.081801ISI: 000323334900005OAI: oai:DiVA.org:su-93757DiVA: diva2:650161
Funder
Swedish Research CouncilKnut and Alice Wallenberg Foundation
Note

AuthorCount:283;

Available from: 2013-09-20 Created: 2013-09-16 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Bohm, ChristianDanninger, MatthiasFinley, ChadFlis, SamuelHulth, Per-OlofHultqvist, KlasWalck, ChristianWolf, MartinZoll, Marcel
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Physical Review Letters
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 52 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf