Change search
ReferencesLink to record
Permanent link

Direct link
Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE)
Show others and affiliations
2013 (English)In: The Lancet Oncology, ISSN 1470-2045, E-ISSN 1474-5488, Vol. 14, no 9, 813-822 p.Article in journal (Refereed) Published
Abstract [en]

Background Ambient air pollution is suspected to cause lung cancer. We aimed to assess the association between long-term exposure to ambient air pollution and lung cancer incidence in European populations. Methods This prospective analysis of data obtained by the European Study of Cohorts for Air Pollution Effects used data from 17 cohort studies based in nine European countries. Baseline addresses were geocoded and we assessed air pollution by land-use regression models for particulate matter (PM) with diameter of less than 10 mu m (PM10), less than 2.5 mu m (PM2.5), and between 2.5 and 10 mu m (PMcoarse), soot (PM2.5 absorbance), nitrogen oxides, and two traffic indicators. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effects models for meta-analyses. Findings The 312944 cohort members contributed 4 013131 person-years at risk. During follow-up (mean 12.8 years), 2095 incident lung cancer cases were diagnosed. The meta-analyses showed a statistically significant association between risk for lung cancer and PM10 (hazard ratio [HR] 1.22 [95% CI 1.03-1.45] per 10 mu g/m(3)). For PM2.5 the HR was 1.18 (0.96-1.46) per 5 mu g/m(3). The same increments of PM10 and PM2.5 were associated with HRs for adenocarcinomas of the lung of 1.51 (1.10-2.08) and 1.55 (1.05-2.29), respectively. An increase in road traffic of 4000 vehicle-km per day within 100 m of the residence was associated with an HR for lung cancer of 1.09 (0.99-1.21). The results showed no association between lung cancer and nitrogen oxides concentration (HR 1.01 [0.95-1.07] per 20 mu g/m(3)) or traffic intensity on the nearest street (HR 1.00 [0.97-1.04] per 5000 vehicles per day). Interpretation Particulate matter air pollution contributes to lung cancer incidence in Europe.

Place, publisher, year, edition, pages
2013. Vol. 14, no 9, 813-822 p.
National Category
Cancer and Oncology
URN: urn:nbn:se:su:diva-94047DOI: 10.1016/S1470-2045(13)70279-1ISI: 000323423400038OAI: diva2:651403


Available from: 2013-09-25 Created: 2013-09-24 Last updated: 2013-09-25Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Aging Research Center (ARC), (together with KI)
In the same journal
The Lancet Oncology
Cancer and Oncology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 34 hits
ReferencesLink to record
Permanent link

Direct link