Change search
ReferencesLink to record
Permanent link

Direct link
Empirical modelling of benthic species distribution, abundance, and diversity in the Baltic Sea: evaluating the scope for predictive mapping using different modelling approaches
Show others and affiliations
2013 (English)In: ICES Journal of Marine Science, ISSN 1054-3139, E-ISSN 1095-9289, Vol. 70, no 6, 1233-1243 p.Article in journal (Refereed) Published
Abstract [en]

The predictive performance of distribution models of common benthic species in the Baltic Sea was compared using four non-linear methods: generalized additive models (GAMs), multivariate adaptive regression splines, random forest (RF), and maximum entropy modelling (MAXENT). The effects of data traits were also tested. In total, 292 occurrence models and 204 quantitative (abundance and diversity) models were assessed. The main conclusions are that (i) the spatial distribution, abundance, and diversity of benthic species in the Baltic Sea can be successfully predicted using several non-linear predictive modelling techniques; (ii) RF was the most accurate method for both models, closely followed by GAM and MAXENT; (iii) correlation coefficients of predictive performance among the modelling techniques were relatively low, suggesting that the performance of methods is related to specific responses; (iv) the differences in predictive performance among the modelling methods could only partly be explained by data traits; (v) the response prevalence was the most important explanatory variable for predictive accuracy of GAM and MAXENT on occurrence data; (vi) RF on the occurrence data was the only method sensitive to sampling density; (vii) a higher predictive accuracy of abundance models could be achieved by reducing variance in the response data and increasing the sample size.

Place, publisher, year, edition, pages
2013. Vol. 70, no 6, 1233-1243 p.
Keyword [en]
generalized additive models, habitat suitability models, marine benthic ecosystems, maximum entropy modelling, multivariate adaptive regression splines, niche modelling, prevalence and sampling density, random forest, species distribution modelling, variance in the response data and sample size
National Category
Ecology Botany Environmental Sciences
URN: urn:nbn:se:su:diva-94026DOI: 10.1093/icesjms/fst036ISI: 000323635600019OAI: diva2:651788


Available from: 2013-09-27 Created: 2013-09-24 Last updated: 2013-09-27Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Gullström, Martin
By organisation
Department of Ecology, Environment and Plant Sciences
In the same journal
ICES Journal of Marine Science
EcologyBotanyEnvironmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 102 hits
ReferencesLink to record
Permanent link

Direct link