Change search
ReferencesLink to record
Permanent link

Direct link
Hydrolysis of the E2P Phosphoenzyme of the Ca2+-ATPase: A Theoretical Study
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
2013 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 117, no 31, 9224-9232 p.Article in journal (Refereed) Published
Abstract [en]

Dephosphorylation of the E2P phosphoenzyme intermediate of the sarcoplasmic reticulum Ca2+-ATPase was studied using density functional theory. The hydrolysis reaction proceeds via a nucleophilic attack on the phosphorylated residue Asp351 by a water molecule, which is positioned by the nearby residue Glu183 acting as a base. The activation barrier was calculated to be 14.3 kcal/mol, which agrees well with values of 15-17 kcal/mol derived from experimentally observed rates. The optimized structure of the transition state reveals considerable bond breakage between phosphorus and the Asp351 oxygen (distance 2.19 angstrom) and little bond formation to the attacking water oxygen (distance 2.26 angstrom). Upon formation of the singly protonated phosphate product, Glu183 becomes protonated. The bridging aspartyl phosphate oxygen approaches Lys684 progressively when proceeding from the reactant state (distance 1.94 angstrom) via the transition state (1.78 angstrom) to the product state (1.58 angstrom). This stabilizes the negative charge that develops on the leaving group. The reaction was calculated to be slightly endergonic (+0.9 kcal/mol) and therefore reversible, in line with experimental findings. It is catalyzed by a preorganized active site with little movement of the nonreacting groups except for a rotation of Thr625 toward the phosphate group.

Place, publisher, year, edition, pages
2013. Vol. 117, no 31, 9224-9232 p.
National Category
Physical Chemistry
URN: urn:nbn:se:su:diva-94189DOI: 10.1021/jp4049814ISI: 000323082200010OAI: diva2:652553
Swedish Research Council


Available from: 2013-10-01 Created: 2013-09-30 Last updated: 2013-10-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Blomberg, Margareta R. A.Barth, Andreas
By organisation
Department of Biochemistry and BiophysicsDepartment of Organic Chemistry
In the same journal
Journal of Physical Chemistry B
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 12 hits
ReferencesLink to record
Permanent link

Direct link