Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Individual variations in the micronucleus assay for biological dosimetry after high dose exposure
Show others and affiliations
2013 (English)In: Mutation research. Genetic toxicology and environmental mutagenesis, ISSN 1383-5718, E-ISSN 1879-3592, Vol. 756, no 1-2, 196-200 p.Article in journal (Refereed) Published
Abstract [en]

The micronucleus assay is widely used as a biological dosimeter. Due to an inhibitory effect of radiation on cell proliferation the assay yields satisfactory results only when the absorbed dose is below about 5 Gy. In 2002 Muller and Rode suggested that a modified version of the test, based on the analysis of the ratio of trinucleated to tetranucleated cells and the frequency of micronuclei (Mn) in binucleated cells containing at least one Mn, can be applied to detect a dose reaching 15 Gy (Mutat. Res. 502 (2002) 47-51). Their conclusion was based on the results of experiments with lymphocytes from one donor and nothing is known about the possible influence of individual variability on the applicability of the Mn test to detect high doses of radiation. The aim of the present study was to validate the modified micronucleus assay with lymphocytes of 5 donors. Their blood was exposed to 0, 5, 10, 15 and 20 Gy of Co-60 gamma rays. The levels of Mn and of cell proliferation were assessed using various approaches. A strong inter-individual variability was observed for all endpoints. The results clearly show that the assessment of cell proliferation is essential for the interpretation of results. Unfortunately, it was not possible to identify one single proliferation marker that gives all necessary information.

Place, publisher, year, edition, pages
2013. Vol. 756, no 1-2, 196-200 p.
Keyword [en]
Micronucleus assay, Biological dosimetry, High radiation doses
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy) Pharmacology and Toxicology
Identifiers
URN: urn:nbn:se:su:diva-96122DOI: 10.1016/j.mrgentox.2013.04.017ISI: 000325600300028OAI: oai:DiVA.org:su-96122DiVA: diva2:663842
Note

AuthorCount:6;

Available from: 2013-11-13 Created: 2013-11-11 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Wojcik, Andrzej
By organisation
Department of Molecular Biosciences, The Wenner-Gren Institute
In the same journal
Mutation research. Genetic toxicology and environmental mutagenesis
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)Pharmacology and Toxicology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 119 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf