Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Single Mutations That Redirect Internal Proton Transfer in the ba(3) Oxidase from Thermus thermophilus
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Show others and affiliations
2013 (English)In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 52, no 40, 7022-7030 p.Article in journal (Refereed) Published
Abstract [en]

The ba(3)-type cytochrome c oxidase from Thermus thermophilus is a membrane-bound proton pump. Results from earlier studies have shown that with the aa(3)-type oxidases proton uptake to the catalytic site and pump site occurs simultaneously. However, with ba(3) oxidase the pump site is loaded before proton transfer to the catalytic site because the proton transfer to the latter is slower than that with the aa(3) oxidases. In addition, the timing of formation and decay of catalytic intermediates is different in the two types of oxidases. In the present study, we have investigated two mutant ba(3) CytcOs in which residues of the proton pathway leading to the catalytic site as well as the pump site were exchanged, Thr312Val and Tyr244Phe. Even though ba(3) CytcO uses only a single proton pathway for transfer of the substrate and pumped protons, the amino-acid residue substitutions had distinctly different effects on the kinetics of proton transfer to the catalytic site and the pump site. The results indicate that the rates of these reactions can be modified independently by replacement of single residues within the proton pathway. Furthermore, the data suggest that the Thr312Val and Tyr244Phe mutations interfere with a structural rearrangement in the proton pathway that is rate limiting for proton transfer to the catalytic site.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2013. Vol. 52, no 40, 7022-7030 p.
National Category
Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:su:diva-97038DOI: 10.1021/bi4008726ISI: 000326355500010OAI: oai:DiVA.org:su-97038DiVA: diva2:670476
Note

AuthorCount:6;

Funding Agencies:

Swedish Research Council;  National Institutes of Health HL 16101;

Stockholm University  

Available from: 2013-12-03 Created: 2013-12-02 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Smirnova, Irinavon Ballmoos, ChristophAdelroth, PiaBrzezinski, Peter
By organisation
Department of Biochemistry and Biophysics
In the same journal
Biochemistry
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 51 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf