Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Collective hydrogen-bond dynamics dictates the electronic structure of aqueous I-3(-)
Stockholm University, Faculty of Science, Department of Physics.
Show others and affiliations
2013 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 15, no 46, 20189-20196 p.Article in journal (Refereed) Published
Abstract [en]

The molecular and electronic structures of aqueous I-3 and I ions have been investigated through ab initio molecular dynamics (MD) simulations and photoelectron (PE) spectroscopy of the iodine 4d core levels. Against the background of the theoretical simulations, data from our I4d PE measurements are shown to contain evidence of coupled solute-solvent dynamics. The MD simulations reveal large amplitude fluctuations in the I-I distances, which couple to the collective rearrangement of the hydrogen bonding network around the I-3(-) ion. Due to the high polarizability of the I-3(-) ion, the asymmetric I-I vibration reaches partially dissociated configurations, for which the electronic structure resembles that of I-2 + I-. The charge localization in the I-3(-) ion is found to be moderated by hydrogen-bonding. As seen in the PE spectrum, these soft molecular vibrations are important for the electronic properties of the I-3(-) ion in solution and may play an important role in its electrochemical function.

Place, publisher, year, edition, pages
2013. Vol. 15, no 46, 20189-20196 p.
National Category
Physical Sciences
Research subject
Physics
Identifiers
URN: urn:nbn:se:su:diva-97406DOI: 10.1039/c3cp52866aISI: 000326747200028OAI: oai:DiVA.org:su-97406DiVA: diva2:678021
Note

AuthorCount:9;

Available from: 2013-12-11 Created: 2013-12-09 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Structure and dynamics in solution – the core electron perspective
Open this publication in new window or tab >>Structure and dynamics in solution – the core electron perspective
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is based on theoretical studies of the molecular and electronic structure of solvated ions and molecules. Very detailed information of the system can be obtained from theoretical calculations, but a realistic model is dependent on an accurate computational method. Accurate calculations of core level electronic spectra, and evaluation of the modeling against experiments, are central parts of this work. The main tools used for characterization of the systems are high-level quantum chemistry and molecular dynamics simulations. 

Molecular components in solutions are involved in many key processes converting sunlight into chemical or electrical energy. Transition metal complexes, with their pronounced absorption in the visible light region of the electromagnetic spectrum, are core components in various energy conversion applications, and the iodide/triiodide redox couple is a commonly used electrolyte. The local structure of the electronic valence in transition metal complexes and the details of the solvation mechanisms of electrolyte solutions are investigated through the combination of computational modeling and core level spectroscopy. The studies of model systems show that interactions between the solute and solvent are important for the electronic structure, and knowledge of the details in model systems studied can be relevant for energy conversion applications. Furthermore, high-level quantum chemistry has been applied for interpreting time-resolved spectra, where the electronic structure of a metal complex is followed during a photoinduced chemical reaction in solution.

With advanced modeling in combination with recent experimental developments, more complex problems than previously addressed can be dissected.

Place, publisher, year, edition, pages
Stockholm: Department of Physics, Stockholm University, 2015. 64 p.
Keyword
quantum chemistry, RASSCF, molecular dynamics, x-ray spectroscopy, electrolyte solutions
National Category
Natural Sciences
Research subject
Physics
Identifiers
urn:nbn:se:su:diva-119838 (URN)978-91-7649-258-1 (ISBN)
Public defence
2015-10-15, sal FB42, AlbaNova universitetscentrum, Roslagstullsbacken 21, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Submitted. Paper 8: Manuscript.

Available from: 2015-09-23 Created: 2015-08-26 Last updated: 2015-09-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Josefsson, IdaOdelius, Michael
By organisation
Department of Physics
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 43 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf