Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations
Show others and affiliations
2013 (English)In: Reviews of geophysics, ISSN 8755-1209, E-ISSN 1944-9208, Vol. 51, no 4, 2012RG000427- p.Article in journal (Refereed) Published
Abstract [en]

The stable oxygen isotope ratio (δ18O) in precipitation is an integrated tracer of atmospheric processes worldwide. Since the 1990s, an intensive effort has been dedicated to studying precipitation isotopic composition at more than 20 stations in the Tibetan Plateau (TP) located at the convergence of air masses between the westerlies and Indian monsoon. In this paper, we establish a database of precipitation δ18O and use different models to evaluate the climatic controls of precipitation δ18O over the TP. The spatial and temporal patterns of precipitation δ18O and their relationships with temperature and precipitation reveal three distinct domains, respectively associated with the influence of the westerlies (northern TP), Indian monsoon (southern TP), and transition in between. Precipitation δ18O in the monsoon domain experiences an abrupt decrease in May and most depletion in August, attributable to the shifting moisture origin between Bay of Bengal (BOB) and southern Indian Ocean. High-resolution atmospheric models capture the spatial and temporal patterns of precipitation δ18O and their relationships with moisture transport from the westerlies and Indian monsoon. Only in the westerlies domain are atmospheric models able to represent the relationships between climate and precipitation δ18O. More significant temperature effect exists when either the westerlies or Indian monsoon is the sole dominant atmospheric process. The observed and simulated altitude-δ18O relationships strongly depend on the season and the domain (Indian monsoon or westerlies). Our results have crucial implications for the interpretation of paleoclimate records and for the application of atmospheric simulations to quantifying paleoclimate and paleo-elevation changes.

Place, publisher, year, edition, pages
2013. Vol. 51, no 4, 2012RG000427- p.
Keyword [en]
precipitation stable isotopes, observations, AGCMs simulations, Tibetan Plateau
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-98043DOI: 10.1002/rog.20023ISI: 000330834700001OAI: oai:DiVA.org:su-98043DiVA: diva2:682230
Available from: 2013-12-25 Created: 2013-12-25 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Sturm, Christophe
By organisation
Department of Geological Sciences
In the same journal
Reviews of geophysics
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf