Change search
ReferencesLink to record
Permanent link

Direct link
Factors affecting species delimitations with the GMYC model: insights from a butterfly survey
Stockholm University, Faculty of Science, Department of Zoology. Pompeu Fabra University, Spain.
2013 (English)In: Methods in Ecology and Evolution, ISSN 2041-210X, Vol. 4, no 12, 1101-1110 p.Article in journal (Refereed) Published
Abstract [en]

The generalized mixed Yule-coalescent (GMYC) model has become one of the most popular approaches for species delimitation based on single-locus data, and it is widely used in biodiversity assessments and phylogenetic community ecology. We here examine an array of factors affecting GMYC resolution (tree reconstruction method, taxon sampling coverage/taxon richness and geographic sampling intensity/geographic scale). We test GMYC performance based on empirical data (DNA barcoding of the Romanian butterflies) on a solid taxonomic framework (i.e. all species are thought to be described and can be determined with independent sources of evidence). The data set is comprehensive (176 species), and intensely and homogeneously sampled (1303 samples representing the main populations of butterflies in this country). Taxonomy was assessed based on morphology, including linear and geometric morphometry when needed. The number of GMYC entities obtained constantly exceeds the total number of morphospecies in the data set. We show that c.80% of the species studied are recognized as entities by GMYC. Interestingly, we show that this percentage is practically the maximum that a single-threshold method can provide for this data set. Thus, the c.20% of failures are attributable to intrinsic properties of the COI polymorphism: overlap in inter- and intraspecific divergences and non-monophyly of the species likely because of introgression or lack of independent lineage sorting. Our results demonstrate that this method is remarkably stable under a wide array of circumstances, including most phylogenetic reconstruction methods, high singleton presence (up to 95%), taxon richness (above five species) and the presence of gaps in intraspecific sampling coverage (removal of intermediate haplotypes). Hence, the method is useful to designate an optimal divergence threshold in an objective manner and to pinpoint potential cryptic species that are worth being studied in detail. However, the existence of a substantial percentage of species wrongly delimited indicates that GMYC cannot be used as sufficient evidence for evaluating the specific status of particular cases without additional data. Finally, we provide a set of guidelines to maximize efficiency in GMYC analyses and discuss the range of studies that can take advantage of the method.

Place, publisher, year, edition, pages
2013. Vol. 4, no 12, 1101-1110 p.
Keyword [en]
cryptic species, DNA barcoding, generalized mixed Yule-coalescent model, Lepidoptera, phylogenetic community ecology, phylogenetic systematics, sampling strategy, species delimitation
National Category
URN: urn:nbn:se:su:diva-98297DOI: 10.1111/2041-210X.12107ISI: 000327997900001OAI: diva2:683898


Available from: 2014-01-07 Created: 2014-01-03 Last updated: 2014-01-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Dinca, Vlad
By organisation
Department of Zoology
In the same journal
Methods in Ecology and Evolution

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 51 hits
ReferencesLink to record
Permanent link

Direct link