Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Isotopic investigation of runoff generation in a glacierized catchment in northern Sweden
Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
Show others and affiliations
2014 (English)In: Hydrological Processes, ISSN 0885-6087, E-ISSN 1099-1085, Vol. 28, no 3, 1383-1398 p.Article in journal (Refereed) Published
Abstract [en]

In this study, summer rainfall contributions to streamflow were quantified in the sub-arctic, 30% glacierized Tarfala (21.7km(2)) catchment in northern Sweden for two non-consecutive summer sampling seasons (2004 and 2011). We used two-component hydrograph separation along with isotope ratios (O-18 and D) of rainwater and daily streamwater samplings to estimate relative fraction and uncertainties (because of laboratory instrumentation, temporal variability and spatial gradients) of source water contributions. We hypothesized that the glacier influence on how rainfall becomes runoff is temporally variable and largely dependent on a combination of the timing of decreasing snow cover on glaciers and the relative moisture storage condition within the catchment. The results indicate that the majority of storm runoff was dominated by pre-event water. However, the average event water contribution during storm events differed slightly between both years with 11% reached in 2004 and 22% in 2011. Event water contributions to runoff generally increased over 2011 the sampling season in both the main stream of Tarfala catchment and in the two pro-glacial streams that drain Storglaciaren (the largest glacier in Tarfala catchment covering 2.9km(2)). We credit both the inter-annual and intra-annual differences in event water contributions to large rainfall events late in the summer melt season, low glacier snow cover and elevated soil moisture due to large antecedent precipitation. Together amplification of these two mechanisms under a warming climate might influence the timing and magnitude of floods, the sediment budget and nutrient cycling in glacierized catchments.

Place, publisher, year, edition, pages
2014. Vol. 28, no 3, 1383-1398 p.
Keyword [en]
isotopic hydrograph separation, glacierized catchments, event water contribution, uncertainty estimation
National Category
Oceanography, Hydrology, Water Resources
Identifiers
URN: urn:nbn:se:su:diva-100651DOI: 10.1002/hyp.9668ISI: 000329352400078OAI: oai:DiVA.org:su-100651DiVA: diva2:696334
Note

AuthorCount:5;

Funding agencies:

Swedish Society of Anthropology and Geography; Ax:son Johnsons foundation 

Available from: 2014-02-13 Created: 2014-02-10 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Dahlke, Helen E.Lyon, Steve W.Jansson, PeterKarlin, TorbjörnRosqvist, Gunhild
By organisation
Department of Physical Geography and Quaternary Geology
In the same journal
Hydrological Processes
Oceanography, Hydrology, Water Resources

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 126 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf