Change search
ReferencesLink to record
Permanent link

Direct link
Near-surface meteorology during the Arctic Summer Cloud Ocean Study (ASCOS): evaluation of reanalyses and global climate models
Show others and affiliations
2014 (English)In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 14, no 1, 427-445 p.Article in journal (Refereed) Published
Abstract [en]

Atmospheric measurements from the Arctic Summer Cloud Ocean Study (ASCOS) are used to evaluate the performance of three atmospheric reanalyses (European Centre for Medium Range Weather Forecasting (ECMWF)-Interim reanalysis, National Center for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) reanalysis, and NCEP-DOE (Department of Energy) reanalysis) and two global climate models (CAM5 (Community Atmosphere Model 5) and NASA GISS (Goddard Institute for Space Studies) ModelE2) in simulation of the high Arctic environment. Quantities analyzed include near surface meteorological variables such as temperature, pressure, humidity and winds, surface-based estimates of cloud and precipitation properties, the surface energy budget, and lower atmospheric temperature structure. In general, the models perform well in simulating large-scale dynamical quantities such as pressure and winds. Near-surface temperature and lower atmospheric stability, along with surface energy budget terms, are not as well represented due largely to errors in simulation of cloud occurrence, phase and altitude. Additionally, a development version of CAMS, which features improved handling of cloud macro physics, has demonstrated to improve simulation of cloud properties and liquid water amount. The ASCOS period additionally provides an excellent example of the benefits gained by evaluating individual budget terms, rather than simply evaluating the net end product, with large compensating errors between individual surface energy budget terms that result in the best net energy budget.

Place, publisher, year, edition, pages
2014. Vol. 14, no 1, 427-445 p.
National Category
Meteorology and Atmospheric Sciences
URN: urn:nbn:se:su:diva-100866DOI: 10.5194/acp-14-427-2014ISI: 000329930600024OAI: diva2:697828


Available from: 2014-02-19 Created: 2014-02-17 Last updated: 2014-02-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Tjernström, Michael
By organisation
Department of Meteorology
In the same journal
Atmospheric Chemistry And Physics
Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 118 hits
ReferencesLink to record
Permanent link

Direct link