Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bioweathering of nontronite colloids in hybrid silica gel: implications for iron mobilization
Stockholm University, Faculty of Science, Department of Geological Sciences.
Show others and affiliations
2014 (English)In: Journal of Applied Microbiology, ISSN 1364-5072, E-ISSN 1365-2672, Vol. 116, no 2, 325-334 p.Article in journal (Refereed) Published
Abstract [en]

AimsThis study aimed to study biotic iron dissolution using a new hybrid material constituted of well-dispersed mineral colloids in a silica gel matrix. This permitted to prevent adsorption of colloidal mineral particles on bacteria. Hybrid silica gel (HSG) permitted to study bioweathering mechanisms by diffusing molecules. Methods and ResultsHybrid silica gel was synthesized through a classical sol-gel procedure in which mineral colloidal particles (NAu-2) were embedded in a porous silica matrix. Rahnella aquatilis RA1, isolated from a wheat rhizosphere was chosen for its ability to dissolve minerals by producing various organic acids and siderophores. Pyruvic, acetic and lactic acids were the major organic acids produced by R.aquatilis RA1 followed by oxalic and citric acids at the end of incubation. Comparison of abiotic and biotic experiments revealed a high efficiency of R.aquatilis RA1 for iron dissolution suggesting an optimized action of different ligands that solubilized or mobilized iron. ConclusionsHybrid silica gel allowed focusing on the colloidal mineral weathering by metabolites diffusion without mineral adsorption on bacteria. Significance and Impact of the StudyHybrid silica gels are new and efficient tools to study colloidal mineral bioweathering. Adjusting HSG porosity and hydrophobicity should permit to precise the influence of limiting diffusion of siderophores or aliphatic organic acids on mineral weathering.

Place, publisher, year, edition, pages
2014. Vol. 116, no 2, 325-334 p.
Keyword [en]
colloids, hybrid material, nontronite, Rahnella aquatilis, weathering
National Category
Geology
Identifiers
URN: urn:nbn:se:su:diva-100855DOI: 10.1111/jam.12361ISI: 000329759800010OAI: oai:DiVA.org:su-100855DiVA: diva2:698305
Note

AuthorCount:7;

Available from: 2014-02-21 Created: 2014-02-17 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Department of Geological Sciences
In the same journal
Journal of Applied Microbiology
Geology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 16 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf