Change search
ReferencesLink to record
Permanent link

Direct link
Water Oxidation Mechanism for Synthetic Co-Oxides with Small Nuclearity
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
2013 (English)In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 135, no 37, 13804-13813 p.Article in journal (Refereed) Published
Abstract [en]

Hybrid DFT model calculations have been performed for some cobalt complexes capable of oxidizing water. Since a very plausible mechanism for the oxygen-evolving complex involving the cuboidal Mn4Ca structure in photosystem II (PSII) has recently been established, the most important part of the present study concerns a detailed comparison between cobalt and manganese as water oxidation catalysts. One similarity found is that a M(IV)-O-center dot state is the key precursor for O-O bond formation in both cases. This means that simply getting a M(IV) state is not enough; a formal M(V)=O state is required, with two oxidations on one center from M(III). For cobalt, not even that is enough. A singlet coupled state is required at this oxidation level, which is not the ground state. It is shown that there are also more fundamental differences between catalysts based on these metals. The favorable low-barrier direct coupling mechanism found for PSII is not possible for the corresponding cobalt complexes. The origin of this difference is explained. For the only oxygen-evolving cubic Co4O4 complex with a defined structure, described by Dismukes et al., the calculated results are in good agreement with experiments. For the Co-4 models of the amorphous cobalt-oxo catalyst found by Nocera et al., higher barriers are found than the one obtained experimentally. The reasons for this are discussed.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2013. Vol. 135, no 37, 13804-13813 p.
National Category
Chemical Sciences
URN: urn:nbn:se:su:diva-101025DOI: 10.1021/ja4053448ISI: 000330163000033OAI: diva2:699401


Funding Agency:

Trygger Foundation

Available from: 2014-02-27 Created: 2014-02-21 Last updated: 2014-04-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Li, XichenSiegbahn, Per E. M.
By organisation
Department of Biochemistry and Biophysics
In the same journal
Journal of the American Chemical Society
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 18 hits
ReferencesLink to record
Permanent link

Direct link