Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nucleic Acid Content in Crustacean Zooplankton: Bridging Metabolic and Stoichiometric Predictions
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
Show others and affiliations
2014 (English)In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 1, e86493- p.Article in journal (Refereed) Published
Abstract [en]

Metabolic and stoichiometric theories of ecology have provided broad complementary principles to understand ecosystem processes across different levels of biological organization. We tested several of their cornerstone hypotheses by measuring the nucleic acid (NA) and phosphorus (P) content of crustacean zooplankton species in 22 high mountain lakes (Sierra Nevada and the Pyrenees mountains, Spain). The P-allocation hypothesis (PAH) proposes that the genome size is smaller in cladocerans than in copepods as a result of selection for fast growth towards P-allocation from DNA to RNA under P limitation. Consistent with the PAH, the RNA: DNA ratio was > 8-fold higher in cladocerans than in copepods, although 'fast-growth' cladocerans did not always exhibit higher RNA and lower DNA contents in comparison to 'slow-growth' copepods. We also showed strong associations among growth rate, RNA, and total P content supporting the growth rate hypothesis, which predicts that fast-growing organisms have high P content because of the preferential allocation to P-rich ribosomal RNA. In addition, we found that ontogenetic variability in NA content of the copepod Mixodiaptomus laciniatus (intra-and interstage variability) was comparable to the interspecific variability across other zooplankton species. Further, according to the metabolic theory of ecology, temperature should enhance growth rate and hence RNA demands. RNA content in zooplankton was correlated with temperature, but the relationships were nutrient-dependent, with a positive correlation in nutrient-rich ecosystems and a negative one in those with scarce nutrients. Overall our results illustrate the mechanistic connections among organismal NA content, growth rate, nutrients and temperature, contributing to the conceptual unification of metabolic and stoichiometric theories.

Place, publisher, year, edition, pages
2014. Vol. 9, no 1, e86493- p.
National Category
Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:su:diva-101245DOI: 10.1371/journal.pone.0086493ISI: 000330244500247OAI: oai:DiVA.org:su-101245DiVA: diva2:703494
Note

AuthorCount:5;

Available from: 2014-03-07 Created: 2014-03-03 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Gorokhova, Elena
By organisation
Department of Applied Environmental Science (ITM)
In the same journal
PLoS ONE
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 144 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf