Change search
ReferencesLink to record
Permanent link

Direct link
Molecular gas in the centre of nearby galaxies from VLT/SINFONI integral field spectroscopy - II. Kinematics(star)
Show others and affiliations
2014 (English)In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 438, no 3, 2036-2064 p.Article in journal (Refereed) Published
Abstract [en]

We present an analysis of the H-2 emission-line gas kinematics in the inner less than or similar to 4 arcsec radius of six nearby spiral galaxies, based on adaptive optics-assisted integral-field observations obtained in the K band with SINFONI/VLT. Four of the six galaxies in our sample display ordered H-2 velocity fields, consistent with gas moving in the plane of the galaxy and rotating in the same direction as the stars. However, the gas kinematics is typically far from simple circular motion. We can classify the observed velocity fields into four different types of flows, ordered by increasing complexity: (1) circular motion in a disc (NGC 3351); (2) oval motion in the galaxy plane (NGC 3627 and NGC 4536); (3) streaming motion superimposed on circular rotation (NGC 4501); and (4) disordered streaming motions (NGC 4569 and NGC 4579). The H-2 velocity dispersion in the galaxies is usually higher than 50 km s(-1) in the inner 1-2 arcsec radii. The four galaxies with ordered kinematics have v/Sigma < 1 at radii less than 40-80 pc. The radius at which v/Sigma = 1 is independent of the type of nuclear activity. While the low values of v/Sigma could be taken as an indication of a thick disc in the innermost regions of the galaxies, other lines of evidence (e.g. H-2 morphologies and velocity fields) argue for a thin disc interpretation in the case of NGC 3351 and NGC 4536. We discuss the implications of the high values of velocity dispersion for the dynamics of the gaseous disc and suggest caution when interpreting the velocity dispersion of ionized and warm tracers as being entirely dynamical. Understanding the nature and role of the velocity dispersion in the gas dynamics, together with the full 2D information of the gas, is essential for obtaining accurate black hole masses from gas kinematics.

Place, publisher, year, edition, pages
2014. Vol. 438, no 3, 2036-2064 p.
Keyword [en]
ISM: molecules, galaxies: ISM, galaxies: kinematics and dynamics, galaxies: nuclei, infrared: galaxies
National Category
Astronomy, Astrophysics and Cosmology
URN: urn:nbn:se:su:diva-102283DOI: 10.1093/mnras/stt2319ISI: 000331877000008OAI: diva2:710065


Available from: 2014-04-04 Created: 2014-03-31 Last updated: 2014-04-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Nowak, Nina
By organisation
Department of AstronomyThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Monthly notices of the Royal Astronomical Society
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 18 hits
ReferencesLink to record
Permanent link

Direct link